test.py 6.82 KB
Newer Older
pangjm's avatar
pangjm committed
1
import argparse
lizz's avatar
lizz committed
2
import os
3
4
5
import os.path as osp
import shutil
import tempfile
pangjm's avatar
pangjm committed
6
7

import mmcv
8
9
10
11
import torch
import torch.distributed as dist
from mmcv.runner import load_checkpoint, get_dist_info
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
Kai Chen's avatar
Kai Chen committed
12

13
from mmdet.apis import init_dist
Kai Chen's avatar
Kai Chen committed
14
from mmdet.core import results2json, coco_eval
15
16
from mmdet.datasets import build_dataloader, get_dataset
from mmdet.models import build_detector
Kai Chen's avatar
Kai Chen committed
17
18


19
def single_gpu_test(model, data_loader, show=False):
Kai Chen's avatar
Kai Chen committed
20
21
    model.eval()
    results = []
22
23
    dataset = data_loader.dataset
    prog_bar = mmcv.ProgressBar(len(dataset))
Kai Chen's avatar
Kai Chen committed
24
25
    for i, data in enumerate(data_loader):
        with torch.no_grad():
Kai Chen's avatar
Kai Chen committed
26
            result = model(return_loss=False, rescale=not show, **data)
Kai Chen's avatar
Kai Chen committed
27
28
29
        results.append(result)

        if show:
30
            model.module.show_result(data, result, dataset.img_norm_cfg)
Kai Chen's avatar
Kai Chen committed
31
32
33
34
35
36
37

        batch_size = data['img'][0].size(0)
        for _ in range(batch_size):
            prog_bar.update()
    return results


38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
def multi_gpu_test(model, data_loader, tmpdir=None):
    model.eval()
    results = []
    dataset = data_loader.dataset
    rank, world_size = get_dist_info()
    if rank == 0:
        prog_bar = mmcv.ProgressBar(len(dataset))
    for i, data in enumerate(data_loader):
        with torch.no_grad():
            result = model(return_loss=False, rescale=True, **data)
        results.append(result)

        if rank == 0:
            batch_size = data['img'][0].size(0)
            for _ in range(batch_size * world_size):
                prog_bar.update()

    # collect results from all ranks
    results = collect_results(results, len(dataset), tmpdir)

    return results


def collect_results(result_part, size, tmpdir=None):
    rank, world_size = get_dist_info()
    # create a tmp dir if it is not specified
    if tmpdir is None:
        MAX_LEN = 512
        # 32 is whitespace
67
68
69
70
        dir_tensor = torch.full((MAX_LEN, ),
                                32,
                                dtype=torch.uint8,
                                device='cuda')
71
72
        if rank == 0:
            tmpdir = tempfile.mkdtemp()
73
74
            tmpdir = torch.tensor(
                bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
            dir_tensor[:len(tmpdir)] = tmpdir
        dist.broadcast(dir_tensor, 0)
        tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
    else:
        mmcv.mkdir_or_exist(tmpdir)
    # dump the part result to the dir
    mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank)))
    dist.barrier()
    # collect all parts
    if rank != 0:
        return None
    else:
        # load results of all parts from tmp dir
        part_list = []
        for i in range(world_size):
            part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i))
            part_list.append(mmcv.load(part_file))
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        # remove tmp dir
        shutil.rmtree(tmpdir)
        return ordered_results
pangjm's avatar
pangjm committed
101
102
103
104
105
106
107
108


def parse_args():
    parser = argparse.ArgumentParser(description='MMDet test detector')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('checkpoint', help='checkpoint file')
    parser.add_argument('--out', help='output result file')
    parser.add_argument(
Kai Chen's avatar
Kai Chen committed
109
110
111
        '--eval',
        type=str,
        nargs='+',
112
        choices=['proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'],
Kai Chen's avatar
Kai Chen committed
113
114
        help='eval types')
    parser.add_argument('--show', action='store_true', help='show results')
115
    parser.add_argument('--tmpdir', help='tmp dir for writing some results')
116
117
118
119
120
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
121
    parser.add_argument('--local_rank', type=int, default=0)
pangjm's avatar
pangjm committed
122
    args = parser.parse_args()
lizz's avatar
lizz committed
123
124
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)
pangjm's avatar
pangjm committed
125
126
127
128
    return args


def main():
129
130
    args = parse_args()

Kai Chen's avatar
Kai Chen committed
131
132
133
    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

Kai Chen's avatar
Kai Chen committed
134
    cfg = mmcv.Config.fromfile(args.config)
yhcao6's avatar
yhcao6 committed
135
136
137
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
Kai Chen's avatar
Kai Chen committed
138
139
140
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

141
142
143
144
145
146
147
148
149
150
    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = get_dataset(cfg.data.test)
151
152
153
154
155
156
    data_loader = build_dataloader(
        dataset,
        imgs_per_gpu=1,
        workers_per_gpu=cfg.data.workers_per_gpu,
        dist=distributed,
        shuffle=False)
157
158
159

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
160
161
162
163
164
165
166
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES
167
168

    if not distributed:
Kai Chen's avatar
Kai Chen committed
169
        model = MMDataParallel(model, device_ids=[0])
170
        outputs = single_gpu_test(model, data_loader, args.show)
pangjm's avatar
pangjm committed
171
    else:
172
173
174
175
176
177
        model = MMDistributedDataParallel(model.cuda())
        outputs = multi_gpu_test(model, data_loader, args.tmpdir)

    rank, _ = get_dist_info()
    if args.out and rank == 0:
        print('\nwriting results to {}'.format(args.out))
Kai Chen's avatar
Kai Chen committed
178
        mmcv.dump(outputs, args.out)
Kai Chen's avatar
Kai Chen committed
179
180
181
182
183
        eval_types = args.eval
        if eval_types:
            print('Starting evaluate {}'.format(' and '.join(eval_types)))
            if eval_types == ['proposal_fast']:
                result_file = args.out
Kai Chen's avatar
Kai Chen committed
184
                coco_eval(result_file, eval_types, dataset.coco)
Kai Chen's avatar
Kai Chen committed
185
            else:
Kai Chen's avatar
Kai Chen committed
186
187
188
189
190
191
192
193
194
195
196
                if not isinstance(outputs[0], dict):
                    result_file = args.out + '.json'
                    results2json(dataset, outputs, result_file)
                    coco_eval(result_file, eval_types, dataset.coco)
                else:
                    for name in outputs[0]:
                        print('\nEvaluating {}'.format(name))
                        outputs_ = [out[name] for out in outputs]
                        result_file = args.out + '.{}.json'.format(name)
                        results2json(dataset, outputs_, result_file)
                        coco_eval(result_file, eval_types, dataset.coco)
pangjm's avatar
pangjm committed
197
198
199
200


if __name__ == '__main__':
    main()