misc.py 1.06 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
from functools import partial

pangjm's avatar
pangjm committed
3
4
import mmcv
import numpy as np
Kai Chen's avatar
Kai Chen committed
5
from six.moves import map, zip
pangjm's avatar
pangjm committed
6

Kai Chen's avatar
Kai Chen committed
7

Kai Chen's avatar
Kai Chen committed
8
9
10
11
def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
    num_imgs = tensor.size(0)
    mean = np.array(mean, dtype=np.float32)
    std = np.array(std, dtype=np.float32)
pangjm's avatar
pangjm committed
12
    imgs = []
Kai Chen's avatar
Kai Chen committed
13
    for img_id in range(num_imgs):
pangjm's avatar
pangjm committed
14
        img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
Kai Chen's avatar
Kai Chen committed
15
        img = mmcv.imdenorm(img, mean, std, to_bgr=to_rgb).astype(np.uint8)
pangjm's avatar
pangjm committed
16
17
18
19
        imgs.append(np.ascontiguousarray(img))
    return imgs


Kai Chen's avatar
Kai Chen committed
20
21
22
23
def multi_apply(func, *args, **kwargs):
    pfunc = partial(func, **kwargs) if kwargs else func
    map_results = map(pfunc, *args)
    return tuple(map(list, zip(*map_results)))
pangjm's avatar
pangjm committed
24
25
26
27
28
29
30
31
32
33
34
35
36


def unmap(data, count, inds, fill=0):
    """ Unmap a subset of item (data) back to the original set of items (of
    size count) """
    if data.dim() == 1:
        ret = data.new_full((count, ), fill)
        ret[inds] = data
    else:
        new_size = (count, ) + data.size()[1:]
        ret = data.new_full(new_size, fill)
        ret[inds, :] = data
    return ret