GETTING_STARTED.md 8.16 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Getting Started

This page provides basic tutorials about the usage of mmdetection.
For installation instructions, please see [INSTALL.md](INSTALL.md).

## Inference with pretrained models

We provide testing scripts to evaluate a whole dataset (COCO, PASCAL VOC, etc.),
and also some high-level apis for easier integration to other projects.

### Test a dataset

- [x] single GPU testing
- [x] multiple GPU testing
- [x] visualize detection results

You can use the following command to test a dataset.

```shell
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--gpus ${GPU_NUM}] [--proc_per_gpu ${PROC_NUM}] [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] [--show]
```

Positional arguments:
- `CONFIG_FILE`: Path to the config file of the corresponding model.
- `CHECKPOINT_FILE`: Path to the checkpoint file.

Optional arguments:
- `GPU_NUM`: Number of GPUs used for testing. (default: 1)
- `PROC_NUM`: Number of processes on each GPU. (default: 1)
- `RESULT_FILE`: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.
- `EVAL_METRICS`: Items to be evaluated on the results. Allowed values are: `proposal_fast`, `proposal`, `bbox`, `segm`, `keypoints`.
- `--show`: If specified, detection results will be ploted on the images and shown in a new window. Only applicable for single GPU testing.

Examples:

Assume that you have already downloaded the checkpoints to `checkpoints/`.

1. Test Faster R-CNN and show the results.

```shell
python tools/test.py configs/faster_rcnn_r50_fpn_1x.py \
    checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth \
    --show
```

2. Test Mask R-CNN and evaluate the bbox and mask AP.

```shell
python tools/test.py configs/mask_rcnn_r50_fpn_1x.py \
    checkpoints/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth \
    --out results.pkl --eval bbox mask
```

3. Test Mask R-CNN with 8 GPUs and 2 processes per GPU, and evaluate the bbox and mask AP.

```shell
python tools/test.py configs/mask_rcnn_r50_fpn_1x.py \
    checkpoints/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth \
    --gpus 8 --proc_per_gpu 2 --out results.pkl --eval bbox mask
```

### High-level APIs for testing images.

Here is an example of building the model and test given images.

```python
import mmcv
from mmcv.runner import load_checkpoint
from mmdet.models import build_detector
from mmdet.apis import inference_detector, show_result

cfg = mmcv.Config.fromfile('configs/faster_rcnn_r50_fpn_1x.py')
cfg.model.pretrained = None

# construct the model and load checkpoint
model = build_detector(cfg.model, test_cfg=cfg.test_cfg)
_ = load_checkpoint(model, 'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth')

# test a single image
img = mmcv.imread('test.jpg')
result = inference_detector(model, img, cfg)
show_result(img, result)

# test a list of images
imgs = ['test1.jpg', 'test2.jpg']
for i, result in enumerate(inference_detector(model, imgs, cfg, device='cuda:0')):
    print(i, imgs[i])
    show_result(imgs[i], result)
```


## Train a model

mmdetection implements distributed training and non-distributed training,
which uses `MMDistributedDataParallel` and `MMDataParallel` respectively.

All outputs (log files and checkpoints) will be saved to the working directory,
which is specified by `work_dir` in the config file.

**\*Important\***: The default learning rate in config files is for 8 GPUs.
If you use less or more than 8 GPUs, you need to set the learning rate proportional
to the GPU num, e.g., 0.01 for 4 GPUs and 0.04 for 16 GPUs.

### Train with a single GPU

```shell
python tools/train.py ${CONFIG_FILE}
```

If you want to specify the working directory in the command, you can add an argument `--work_dir ${YOUR_WORK_DIR}`.

### Train with multiple GPUs

```shell
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]
```

Optional arguments are:

- `--validate` (recommended): Perform evaluation at every k (default=1) epochs during the training.
- `--work_dir ${WORK_DIR}`: Override the working directory specified in the config file.
- `--resume_from ${CHECKPOINT_FILE}`: Resume from a previous checkpoint file.

### Train with multiple machines

If you run mmdetection on a cluster managed with [slurm](https://slurm.schedmd.com/), you can just use the script `slurm_train.sh`.

```shell
./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} [${GPUS}]
```

Here is an example of using 16 GPUs to train Mask R-CNN on the dev partition.

```shell
./tools/slurm_train.sh dev mask_r50_1x configs/mask_rcnn_r50_fpn_1x.py /nfs/xxxx/mask_rcnn_r50_fpn_1x 16
```

You can check [slurm_train.sh](tools/slurm_train.sh) for full arguments and environment variables.

If you have just multiple machines connected with ethernet, you can refer to
pytorch [launch utility](https://pytorch.org/docs/stable/distributed_deprecated.html#launch-utility).
Usually it is slow if you do not have high speed networking like infiniband.


## How-to

### Use my own datasets

The simplest way is to convert your dataset to existing dataset formats (COCO or PASCAL VOC).

Here we show an example of adding a custom dataset of 5 classes, assuming it is also in COCO format.

In `mmdet/datasets/my_dataset.py`:

```python
from .coco import CocoDataset


class MyDataset(CocoDataset):

    CLASSES = ('a', 'b', 'c', 'd', 'e')
```

In `mmdet/datasets/__init__.py`:

```python
from .my_dataset import MyDataset
```

Then you can use `MyDataset` in config files, with the same API as CocoDataset.


It is also fine if you do not want to convert the annotation format to COCO or PASCAL format.
Actually, we define a simple annotation format and all existing datasets are
processed to be compatible with it, either online or offline.

The annotation of a dataset is a list of dict, each dict corresponds to an image.
There are 3 field `filename` (relative path), `width`, `height` for testing,
and an additional field `ann` for training. `ann` is also a dict containing at least 2 fields:
`bboxes` and `labels`, both of which are numpy arrays. Some datasets may provide
annotations like crowd/difficult/ignored bboxes, we use `bboxes_ignore` and `labels_ignore`
to cover them.

Here is an example.
```
[
    {
        'filename': 'a.jpg',
        'width': 1280,
        'height': 720,
        'ann': {
            'bboxes': <np.ndarray, float32> (n, 4),
            'labels': <np.ndarray, float32> (n, ),
            'bboxes_ignore': <np.ndarray, float32> (k, 4),
            'labels_ignore': <np.ndarray, float32> (k, ) (optional field)
        }
    },
    ...
]
```

There are two ways to work with custom datasets.

- online conversion

  You can write a new Dataset class inherited from `CustomDataset`, and overwrite two methods
  `load_annotations(self, ann_file)` and `get_ann_info(self, idx)`,
  like [CocoDataset](mmdet/datasets/coco.py) and [VOCDataset](mmdet/datasets/voc.py).

- offline conversion

  You can convert the annotation format to the expected format above and save it to
  a pickle or json file, like [pascal_voc.py](tools/convert_datasets/pascal_voc.py).
  Then you can simply use `CustomDataset`.

### Develop new components

We basically categorize model components into 4 types.

- backbone: usually a FCN network to extract feature maps, e.g., ResNet, MobileNet.
- neck: the component between backbones and heads, e.g., FPN, PAFPN.
- head: the component for specific tasks, e.g., bbox prediction and mask prediction.
- roi extractor: the part for extracting RoI features from feature maps, e.g., RoI Align.

Here we show how to develop new components with an example of MobileNet.

1. Create a new file `mmdet/models/backbones/mobilenet.py`.

```python
import torch.nn as nn

from ..registry import BACKBONES


@BACKBONES.register
class MobileNet(nn.Module):

    def __init__(self, arg1, arg2):
        pass

    def forward(x):  # should return a tuple
        pass
```

2. Import the module in `mmdet/models/backbones/__init__.py`.

```python
from .mobilenet import MobileNet
```

3. Use it in your config file.

```python
model = dict(
    ...
    backbone=dict(
        type='MobileNet',
        arg1=xxx,
        arg2=xxx),
    ...
```

For more information on how it works, you can refer to [TECHNICAL_DETAILS.md](TECHNICAL_DETAILS.md) (TODO).