retinanet_r50_fpn_1x.py 3.07 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
# model settings
model = dict(
    type='RetinaNet',
    pretrained='modelzoo://resnet50',
    backbone=dict(
Kai Chen's avatar
Kai Chen committed
6
        type='ResNet',
Kai Chen's avatar
Kai Chen committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        style='pytorch'),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        start_level=1,
        add_extra_convs=True,
        num_outs=5),
    bbox_head=dict(
        type='RetinaHead',
        num_classes=81,
        in_channels=256,
        stacked_convs=4,
        feat_channels=256,
        scales_per_octave=3,
        anchor_scale=4,
        anchor_ratios=[1.0, 2.0, 0.5],
        anchor_strides=[8, 16, 32, 64, 128],
        target_means=[.0, .0, .0, .0],
        target_stds=[1.0, 1.0, 1.0, 1.0]))
# training and testing settings
train_cfg = dict(
    pos_iou_thr=0.5,
    neg_iou_thr=0.4,
    min_pos_iou=0.4,
    smoothl1_beta=0.11,
    gamma=2.0,
    alpha=0.25,
    allowed_border=-1,
    pos_weight=-1,
    debug=False)
test_cfg = dict(
    nms_pre=1000,
    nms_thr=0.5,
    min_bbox_size=0,
    score_thr=0.05,
    max_per_img=100)
# dataset settings
dataset_type = 'CocoDataset'
Kai Chen's avatar
Kai Chen committed
50
data_root = 'data/coco/'
Kai Chen's avatar
Kai Chen committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
        flip_ratio=0.5,
        with_mask=False,
        with_crowd=False,
        with_label=True),
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
        flip_ratio=0,
        with_mask=False,
        with_crowd=False,
        with_label=True),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
        flip_ratio=0,
        with_mask=False,
        with_crowd=False,
        with_label=False,
        test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
    step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=20,
    hooks=[
        dict(type='TextLoggerHook'),
Kai Chen's avatar
Kai Chen committed
106
        # dict(type='TensorboardLoggerHook')
Kai Chen's avatar
Kai Chen committed
107
108
109
110
111
    ])
# yapf:enable
# runtime settings
total_epochs = 12
device_ids = range(8)
Kai Chen's avatar
Kai Chen committed
112
dist_params = dict(backend='nccl')
Kai Chen's avatar
Kai Chen committed
113
log_level = 'INFO'
Kai Chen's avatar
Kai Chen committed
114
work_dir = './work_dirs/retinanet_r50_fpn_1x'
Kai Chen's avatar
Kai Chen committed
115
116
117
load_from = None
resume_from = None
workflow = [('train', 1)]