faster_rcnn_r50_fpn_1x.py 4.22 KB
Newer Older
pangjm's avatar
pangjm committed
1
2
# model settings
model = dict(
Kai Chen's avatar
Kai Chen committed
3
4
    type='FasterRCNN',
    pretrained='modelzoo://resnet50',
pangjm's avatar
pangjm committed
5
    backbone=dict(
Kai Chen's avatar
Kai Chen committed
6
        type='ResNet',
pangjm's avatar
pangjm committed
7
8
9
10
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
11
        style='pytorch'),
pangjm's avatar
pangjm committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    rpn_head=dict(
        type='RPNHead',
        in_channels=256,
        feat_channels=256,
        anchor_scales=[8],
        anchor_ratios=[0.5, 1.0, 2.0],
        anchor_strides=[4, 8, 16, 32, 64],
        target_means=[.0, .0, .0, .0],
        target_stds=[1.0, 1.0, 1.0, 1.0],
        use_sigmoid_cls=True),
Kai Chen's avatar
Kai Chen committed
27
    bbox_roi_extractor=dict(
28
        type='SingleRoIExtractor',
pangjm's avatar
pangjm committed
29
30
31
32
        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
        out_channels=256,
        featmap_strides=[4, 8, 16, 32]),
    bbox_head=dict(
Kai Chen's avatar
Kai Chen committed
33
        type='SharedFCBBoxHead',
pangjm's avatar
pangjm committed
34
35
36
37
38
39
40
41
        num_fcs=2,
        in_channels=256,
        fc_out_channels=1024,
        roi_feat_size=7,
        num_classes=81,
        target_means=[0., 0., 0., 0.],
        target_stds=[0.1, 0.1, 0.2, 0.2],
        reg_class_agnostic=False))
Kai Chen's avatar
Kai Chen committed
42
43
44
# model training and testing settings
train_cfg = dict(
    rpn=dict(
Kai Chen's avatar
Kai Chen committed
45
46
47
48
49
50
51
52
53
54
55
56
        assigner=dict(
            pos_iou_thr=0.7,
            neg_iou_thr=0.3,
            min_pos_iou=0.3,
            ignore_iof_thr=-1),
        sampler=dict(
            num=256,
            pos_fraction=0.5,
            neg_pos_ub=-1,
            add_gt_as_proposals=False,
            pos_balance_sampling=False,
            neg_balance_thr=0),
pangjm's avatar
pangjm committed
57
58
59
60
        allowed_border=0,
        pos_weight=-1,
        smoothl1_beta=1 / 9.0,
        debug=False),
Kai Chen's avatar
Kai Chen committed
61
    rcnn=dict(
Kai Chen's avatar
Kai Chen committed
62
63
64
65
66
67
68
69
70
71
72
73
        assigner=dict(
            pos_iou_thr=0.5,
            neg_iou_thr=0.5,
            min_pos_iou=0.5,
            ignore_iof_thr=-1),
        sampler=dict(
            num=512,
            pos_fraction=0.25,
            neg_pos_ub=-1,
            add_gt_as_proposals=True,
            pos_balance_sampling=False,
            neg_balance_thr=0),
pangjm's avatar
pangjm committed
74
        pos_weight=-1,
Kai Chen's avatar
Kai Chen committed
75
76
77
78
79
80
81
82
83
        debug=False))
test_cfg = dict(
    rpn=dict(
        nms_across_levels=False,
        nms_pre=2000,
        nms_post=2000,
        max_num=2000,
        nms_thr=0.7,
        min_bbox_size=0),
84
    rcnn=dict(score_thr=0.05, max_per_img=100, nms_thr=0.5))
pangjm's avatar
pangjm committed
85
# dataset settings
Kai Chen's avatar
Kai Chen committed
86
dataset_type = 'CocoDataset'
Kai Chen's avatar
Kai Chen committed
87
data_root = 'data/coco/'
pangjm's avatar
pangjm committed
88
img_norm_cfg = dict(
Kai Chen's avatar
Kai Chen committed
89
90
91
92
93
94
95
96
97
98
99
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
100
101
102
        flip_ratio=0.5,
        with_mask=False,
        with_crowd=True,
Kai Chen's avatar
Kai Chen committed
103
104
        with_label=True),
    val=dict(
Kai Chen's avatar
Kai Chen committed
105
106
107
108
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
Kai Chen's avatar
Kai Chen committed
109
110
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
Kai Chen's avatar
Kai Chen committed
111
        flip_ratio=0,
Kai Chen's avatar
Kai Chen committed
112
113
114
115
116
117
118
119
        with_mask=False,
        with_crowd=True,
        with_label=True),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
Kai Chen's avatar
Kai Chen committed
120
        img_norm_cfg=img_norm_cfg,
121
        size_divisor=32,
Kai Chen's avatar
Kai Chen committed
122
        flip_ratio=0,
123
124
125
        with_mask=False,
        with_label=False,
        test_mode=True))
pangjm's avatar
pangjm committed
126
127
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
Kai Chen's avatar
Kai Chen committed
128
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
pangjm's avatar
pangjm committed
129
# learning policy
Kai Chen's avatar
Kai Chen committed
130
lr_config = dict(
pangjm's avatar
pangjm committed
131
132
133
    policy='step',
    warmup='linear',
    warmup_iters=500,
Kai Chen's avatar
Kai Chen committed
134
    warmup_ratio=1.0 / 3,
pangjm's avatar
pangjm committed
135
136
137
138
    step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
Kai Chen's avatar
Kai Chen committed
139
    interval=50,
pangjm's avatar
pangjm committed
140
141
    hooks=[
        dict(type='TextLoggerHook'),
Kai Chen's avatar
Kai Chen committed
142
        # dict(type='TensorboardLoggerHook')
pangjm's avatar
pangjm committed
143
144
    ])
# yapf:enable
Kai Chen's avatar
Kai Chen committed
145
146
# runtime settings
total_epochs = 12
147
dist_params = dict(backend='nccl')
Kai Chen's avatar
Kai Chen committed
148
log_level = 'INFO'
Kai Chen's avatar
Kai Chen committed
149
work_dir = './work_dirs/faster_rcnn_r50_fpn_1x'
pangjm's avatar
pangjm committed
150
151
152
load_from = None
resume_from = None
workflow = [('train', 1)]