convfc_bbox_head.py 6.58 KB
Newer Older
pangjm's avatar
pangjm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch.nn as nn

from .bbox_head import BBoxHead
from ..utils import ConvModule


class ConvFCRoIHead(BBoxHead):
    """More general bbox head, with shared conv and fc layers and two optional
    separated branches.

                                /-> cls convs -> cls fcs -> cls
    shared convs -> shared fcs
                                \-> reg convs -> reg fcs -> reg
    """

    def __init__(self,
                 num_shared_convs=0,
                 num_shared_fcs=0,
                 num_cls_convs=0,
                 num_cls_fcs=0,
                 num_reg_convs=0,
                 num_reg_fcs=0,
                 conv_out_channels=256,
                 fc_out_channels=1024,
                 *args,
                 **kwargs):
        super(ConvFCRoIHead, self).__init__(*args, **kwargs)
        assert (num_shared_convs + num_shared_fcs + num_cls_convs + num_cls_fcs
                + num_reg_convs + num_reg_fcs > 0)
        if num_cls_convs > 0 or num_reg_convs > 0:
            assert num_shared_fcs == 0
        if not self.with_cls:
            assert num_cls_convs == 0 and num_cls_fcs == 0
        if not self.with_reg:
            assert num_reg_convs == 0 and num_reg_fcs == 0
        self.num_shared_convs = num_shared_convs
        self.num_shared_fcs = num_shared_fcs
        self.num_cls_convs = num_cls_convs
        self.num_cls_fcs = num_cls_fcs
        self.num_reg_convs = num_reg_convs
        self.num_reg_fcs = num_reg_fcs
        self.conv_out_channels = conv_out_channels
        self.fc_out_channels = fc_out_channels

        # add shared convs and fcs
        self.shared_convs, self.shared_fcs, last_layer_dim = self._add_conv_fc_branch(
            self.num_shared_convs, self.num_shared_fcs, self.in_channels, True)
        self.shared_out_channels = last_layer_dim

        # add cls specific branch
        self.cls_convs, self.cls_fcs, self.cls_last_dim = self._add_conv_fc_branch(
            self.num_cls_convs, self.num_cls_fcs, self.shared_out_channels)

        # add reg specific branch
        self.reg_convs, self.reg_fcs, self.reg_last_dim = self._add_conv_fc_branch(
            self.num_reg_convs, self.num_reg_fcs, self.shared_out_channels)

        if self.num_shared_fcs == 0 and not self.with_avg_pool:
            if self.num_cls_fcs == 0:
                self.cls_last_dim *= (self.roi_feat_size * self.roi_feat_size)
            if self.num_reg_fcs == 0:
                self.reg_last_dim *= (self.roi_feat_size * self.roi_feat_size)

        self.relu = nn.ReLU(inplace=True)
        # reconstruct fc_cls and fc_reg since input channels are changed
        if self.with_cls:
            self.fc_cls = nn.Linear(self.cls_last_dim, self.num_classes)
        if self.with_reg:
            out_dim_reg = (4 if self.reg_class_agnostic else
                           4 * self.num_classes)
            self.fc_reg = nn.Linear(self.reg_last_dim, out_dim_reg)

    def _add_conv_fc_branch(self,
                            num_branch_convs,
                            num_branch_fcs,
                            in_channels,
                            is_shared=False):
        """Add shared or separable branch

        convs -> avg pool (optional) -> fcs
        """
        last_layer_dim = in_channels
        # add branch specific conv layers
        branch_convs = nn.ModuleList()
        if num_branch_convs > 0:
            for i in range(num_branch_convs):
                conv_in_channels = (last_layer_dim
                                    if i == 0 else self.conv_out_channels)
                branch_convs.append(
                    ConvModule(
                        conv_in_channels,
                        self.conv_out_channels,
                        3,
                        padding=1,
                        normalize=self.normalize,
                        bias=self.with_bias))
            last_layer_dim = self.conv_out_channels
        # add branch specific fc layers
        branch_fcs = nn.ModuleList()
        if num_branch_fcs > 0:
            # for shared branch, only consider self.with_avg_pool
            # for separated branches, also consider self.num_shared_fcs
            if (is_shared
                    or self.num_shared_fcs == 0) and not self.with_avg_pool:
                last_layer_dim *= (self.roi_feat_size * self.roi_feat_size)
            for i in range(num_branch_fcs):
                fc_in_channels = (last_layer_dim
                                  if i == 0 else self.fc_out_channels)
                branch_fcs.append(
                    nn.Linear(fc_in_channels, self.fc_out_channels))
            last_layer_dim = self.fc_out_channels
        return branch_convs, branch_fcs, last_layer_dim

    def init_weights(self):
        super(ConvFCRoIHead, self).init_weights()
        for module_list in [self.shared_fcs, self.cls_fcs, self.reg_fcs]:
            for m in module_list.modules():
                if isinstance(m, nn.Linear):
                    nn.init.xavier_uniform_(m.weight)
                    nn.init.constant_(m.bias, 0)

    def forward(self, x):
        # shared part
        if self.num_shared_convs > 0:
            for conv in self.shared_convs:
                x = conv(x)

        if self.num_shared_fcs > 0:
            if self.with_avg_pool:
                x = self.avg_pool(x)
            x = x.view(x.size(0), -1)
            for fc in self.shared_fcs:
                x = self.relu(fc(x))
        # separate branches
        x_cls = x
        x_reg = x

        for conv in self.cls_convs:
            x_cls = conv(x_cls)
        if x_cls.dim() > 2:
            if self.with_avg_pool:
                x_cls = self.avg_pool(x_cls)
            x_cls = x_cls.view(x_cls.size(0), -1)
        for fc in self.cls_fcs:
            x_cls = self.relu(fc(x_cls))

        for conv in self.reg_convs:
            x_reg = conv(x_reg)
        if x_reg.dim() > 2:
            if self.with_avg_pool:
                x_reg = self.avg_pool(x_reg)
            x_reg = x_reg.view(x_reg.size(0), -1)
        for fc in self.reg_fcs:
            x_reg = self.relu(fc(x_reg))

        cls_score = self.fc_cls(x_cls) if self.with_cls else None
        bbox_pred = self.fc_reg(x_reg) if self.with_reg else None
        return cls_score, bbox_pred


class SharedFCRoIHead(ConvFCRoIHead):

    def __init__(self, num_fcs=2, fc_out_channels=1024, *args, **kwargs):
        assert num_fcs >= 1
        super(SharedFCRoIHead, self).__init__(
            num_shared_convs=0,
            num_shared_fcs=num_fcs,
            num_cls_convs=0,
            num_cls_fcs=0,
            num_reg_convs=0,
            num_reg_fcs=0,
            fc_out_channels=fc_out_channels,
            *args,
            **kwargs)