fcos_head.py 15.2 KB
Newer Older
1
2
3
4
import torch
import torch.nn as nn
from mmcv.cnn import normal_init

Kai Chen's avatar
Kai Chen committed
5
6
from mmdet.core import multi_apply, multiclass_nms, distance2bbox
from ..builder import build_loss
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from ..registry import HEADS
from ..utils import bias_init_with_prob, Scale, ConvModule

INF = 1e8


@HEADS.register_module
class FCOSHead(nn.Module):

    def __init__(self,
                 num_classes,
                 in_channels,
                 feat_channels=256,
                 stacked_convs=4,
                 strides=(4, 8, 16, 32, 64),
                 regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512),
                                 (512, INF)),
Kai Chen's avatar
Kai Chen committed
24
25
26
27
28
29
30
31
32
33
34
                 loss_cls=dict(
                     type='FocalLoss',
                     use_sigmoid=True,
                     gamma=2.0,
                     alpha=0.25,
                     loss_weight=1.0),
                 loss_bbox=dict(type='IoULoss', loss_weight=1.0),
                 loss_centerness=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
35
36
37
38
39
40
41
42
43
44
45
                 conv_cfg=None,
                 norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)):
        super(FCOSHead, self).__init__()

        self.num_classes = num_classes
        self.cls_out_channels = num_classes - 1
        self.in_channels = in_channels
        self.feat_channels = feat_channels
        self.stacked_convs = stacked_convs
        self.strides = strides
        self.regress_ranges = regress_ranges
Kai Chen's avatar
Kai Chen committed
46
47
48
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)
        self.loss_centerness = build_loss(loss_centerness)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg

        self._init_layers()

    def _init_layers(self):
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    bias=self.norm_cfg is None))
            self.reg_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    bias=self.norm_cfg is None))
        self.fcos_cls = nn.Conv2d(
            self.feat_channels, self.cls_out_channels, 3, padding=1)
        self.fcos_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
        self.fcos_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1)

        self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])

    def init_weights(self):
        for m in self.cls_convs:
            normal_init(m.conv, std=0.01)
        for m in self.reg_convs:
            normal_init(m.conv, std=0.01)
        bias_cls = bias_init_with_prob(0.01)
        normal_init(self.fcos_cls, std=0.01, bias=bias_cls)
        normal_init(self.fcos_reg, std=0.01)
        normal_init(self.fcos_centerness, std=0.01)

    def forward(self, feats):
        return multi_apply(self.forward_single, feats, self.scales)

    def forward_single(self, x, scale):
        cls_feat = x
        reg_feat = x

        for cls_layer in self.cls_convs:
            cls_feat = cls_layer(cls_feat)
        cls_score = self.fcos_cls(cls_feat)
        centerness = self.fcos_centerness(cls_feat)

        for reg_layer in self.reg_convs:
            reg_feat = reg_layer(reg_feat)
        # scale the bbox_pred of different level
        bbox_pred = scale(self.fcos_reg(reg_feat)).exp()
        return cls_score, bbox_pred, centerness

    def loss(self,
             cls_scores,
             bbox_preds,
             centernesses,
             gt_bboxes,
             gt_labels,
             img_metas,
             cfg,
             gt_bboxes_ignore=None):
        assert len(cls_scores) == len(bbox_preds) == len(centernesses)
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        all_level_points = self.get_points(featmap_sizes, bbox_preds[0].dtype,
                                           bbox_preds[0].device)
        labels, bbox_targets = self.fcos_target(all_level_points, gt_bboxes,
                                                gt_labels)

        num_imgs = cls_scores[0].size(0)
        # flatten cls_scores, bbox_preds and centerness
        flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
            for cls_score in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
            for bbox_pred in bbox_preds
        ]
        flatten_centerness = [
            centerness.permute(0, 2, 3, 1).reshape(-1)
            for centerness in centernesses
        ]
        flatten_cls_scores = torch.cat(flatten_cls_scores)
        flatten_bbox_preds = torch.cat(flatten_bbox_preds)
        flatten_centerness = torch.cat(flatten_centerness)
        flatten_labels = torch.cat(labels)
        flatten_bbox_targets = torch.cat(bbox_targets)
        # repeat points to align with bbox_preds
        flatten_points = torch.cat(
            [points.repeat(num_imgs, 1) for points in all_level_points])

        pos_inds = flatten_labels.nonzero().reshape(-1)
        num_pos = len(pos_inds)
Kai Chen's avatar
Kai Chen committed
155
156
157
        loss_cls = self.loss_cls(
            flatten_cls_scores, flatten_labels,
            avg_factor=num_pos + num_imgs)  # avoid num_pos is 0
158
159
160
161
162
163
164
165
166
167
168
169

        pos_bbox_preds = flatten_bbox_preds[pos_inds]
        pos_bbox_targets = flatten_bbox_targets[pos_inds]
        pos_centerness = flatten_centerness[pos_inds]
        pos_centerness_targets = self.centerness_target(pos_bbox_targets)

        if num_pos > 0:
            pos_points = flatten_points[pos_inds]
            pos_decoded_bbox_preds = distance2bbox(pos_points, pos_bbox_preds)
            pos_decoded_target_preds = distance2bbox(pos_points,
                                                     pos_bbox_targets)
            # centerness weighted iou loss
Kai Chen's avatar
Kai Chen committed
170
            loss_bbox = self.loss_bbox(
171
172
                pos_decoded_bbox_preds,
                pos_decoded_target_preds,
Kai Chen's avatar
Kai Chen committed
173
174
175
176
                weight=pos_centerness_targets,
                avg_factor=pos_centerness_targets.sum())
            loss_centerness = self.loss_centerness(pos_centerness,
                                                   pos_centerness_targets)
177
        else:
Kai Chen's avatar
Kai Chen committed
178
179
            loss_bbox = pos_bbox_preds.sum()
            loss_centerness = pos_centerness.sum()
180
181
182

        return dict(
            loss_cls=loss_cls,
Kai Chen's avatar
Kai Chen committed
183
            loss_bbox=loss_bbox,
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
            loss_centerness=loss_centerness)

    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   centernesses,
                   img_metas,
                   cfg,
                   rescale=None):
        assert len(cls_scores) == len(bbox_preds)
        num_levels = len(cls_scores)

        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        mlvl_points = self.get_points(featmap_sizes, bbox_preds[0].dtype,
                                      bbox_preds[0].device)
        result_list = []
        for img_id in range(len(img_metas)):
            cls_score_list = [
                cls_scores[i][img_id].detach() for i in range(num_levels)
            ]
            bbox_pred_list = [
                bbox_preds[i][img_id].detach() for i in range(num_levels)
            ]
            centerness_pred_list = [
                centernesses[i][img_id].detach() for i in range(num_levels)
            ]
            img_shape = img_metas[img_id]['img_shape']
            scale_factor = img_metas[img_id]['scale_factor']
Kai Chen's avatar
Kai Chen committed
212
213
214
215
            det_bboxes = self.get_bboxes_single(cls_score_list, bbox_pred_list,
                                                centerness_pred_list,
                                                mlvl_points, img_shape,
                                                scale_factor, cfg, rescale)
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
            result_list.append(det_bboxes)
        return result_list

    def get_bboxes_single(self,
                          cls_scores,
                          bbox_preds,
                          centernesses,
                          mlvl_points,
                          img_shape,
                          scale_factor,
                          cfg,
                          rescale=False):
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_points)
        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_centerness = []
        for cls_score, bbox_pred, centerness, points in zip(
                cls_scores, bbox_preds, centernesses, mlvl_points):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
            scores = cls_score.permute(1, 2, 0).reshape(
                -1, self.cls_out_channels).sigmoid()
            centerness = centerness.permute(1, 2, 0).reshape(-1).sigmoid()

            bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
            nms_pre = cfg.get('nms_pre', -1)
            if nms_pre > 0 and scores.shape[0] > nms_pre:
                max_scores, _ = (scores * centerness[:, None]).max(dim=1)
                _, topk_inds = max_scores.topk(nms_pre)
                points = points[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                scores = scores[topk_inds, :]
                centerness = centerness[topk_inds]
            bboxes = distance2bbox(points, bbox_pred, max_shape=img_shape)
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
            mlvl_centerness.append(centerness)
        mlvl_bboxes = torch.cat(mlvl_bboxes)
        if rescale:
            mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
        mlvl_scores = torch.cat(mlvl_scores)
        padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
        mlvl_scores = torch.cat([padding, mlvl_scores], dim=1)
        mlvl_centerness = torch.cat(mlvl_centerness)
        det_bboxes, det_labels = multiclass_nms(
            mlvl_bboxes,
            mlvl_scores,
            cfg.score_thr,
            cfg.nms,
            cfg.max_per_img,
265
            score_factors=mlvl_centerness)
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        return det_bboxes, det_labels

    def get_points(self, featmap_sizes, dtype, device):
        """Get points according to feature map sizes.

        Args:
            featmap_sizes (list[tuple]): Multi-level feature map sizes.
            dtype (torch.dtype): Type of points.
            device (torch.device): Device of points.

        Returns:
            tuple: points of each image.
        """
        mlvl_points = []
        for i in range(len(featmap_sizes)):
            mlvl_points.append(
                self.get_points_single(featmap_sizes[i], self.strides[i],
                                       dtype, device))
        return mlvl_points

    def get_points_single(self, featmap_size, stride, dtype, device):
        h, w = featmap_size
        x_range = torch.arange(
            0, w * stride, stride, dtype=dtype, device=device)
        y_range = torch.arange(
            0, h * stride, stride, dtype=dtype, device=device)
        y, x = torch.meshgrid(y_range, x_range)
        points = torch.stack(
            (x.reshape(-1), y.reshape(-1)), dim=-1) + stride // 2
        return points

    def fcos_target(self, points, gt_bboxes_list, gt_labels_list):
        assert len(points) == len(self.regress_ranges)
        num_levels = len(points)
        # expand regress ranges to align with points
        expanded_regress_ranges = [
            points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
                points[i]) for i in range(num_levels)
        ]
        # concat all levels points and regress ranges
        concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
        concat_points = torch.cat(points, dim=0)
        # get labels and bbox_targets of each image
        labels_list, bbox_targets_list = multi_apply(
            self.fcos_target_single,
            gt_bboxes_list,
            gt_labels_list,
            points=concat_points,
            regress_ranges=concat_regress_ranges)

        # split to per img, per level
        num_points = [center.size(0) for center in points]
        labels_list = [labels.split(num_points, 0) for labels in labels_list]
        bbox_targets_list = [
            bbox_targets.split(num_points, 0)
            for bbox_targets in bbox_targets_list
        ]

        # concat per level image
        concat_lvl_labels = []
        concat_lvl_bbox_targets = []
        for i in range(num_levels):
            concat_lvl_labels.append(
                torch.cat([labels[i] for labels in labels_list]))
            concat_lvl_bbox_targets.append(
                torch.cat(
                    [bbox_targets[i] for bbox_targets in bbox_targets_list]))
        return concat_lvl_labels, concat_lvl_bbox_targets

    def fcos_target_single(self, gt_bboxes, gt_labels, points, regress_ranges):
        num_points = points.size(0)
        num_gts = gt_labels.size(0)

        areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0] + 1) * (
            gt_bboxes[:, 3] - gt_bboxes[:, 1] + 1)
        # TODO: figure out why these two are different
        # areas = areas[None].expand(num_points, num_gts)
        areas = areas[None].repeat(num_points, 1)
        regress_ranges = regress_ranges[:, None, :].expand(
            num_points, num_gts, 2)
        gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
        xs, ys = points[:, 0], points[:, 1]
        xs = xs[:, None].expand(num_points, num_gts)
        ys = ys[:, None].expand(num_points, num_gts)

        left = xs - gt_bboxes[..., 0]
        right = gt_bboxes[..., 2] - xs
        top = ys - gt_bboxes[..., 1]
        bottom = gt_bboxes[..., 3] - ys
        bbox_targets = torch.stack((left, top, right, bottom), -1)

        # condition1: inside a gt bbox
        inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0

        # condition2: limit the regression range for each location
        max_regress_distance = bbox_targets.max(-1)[0]
        inside_regress_range = (
            max_regress_distance >= regress_ranges[..., 0]) & (
                max_regress_distance <= regress_ranges[..., 1])

        # if there are still more than one objects for a location,
        # we choose the one with minimal area
        areas[inside_gt_bbox_mask == 0] = INF
        areas[inside_regress_range == 0] = INF
        min_area, min_area_inds = areas.min(dim=1)

        labels = gt_labels[min_area_inds]
        labels[min_area == INF] = 0
        bbox_targets = bbox_targets[range(num_points), min_area_inds]

        return labels, bbox_targets

    def centerness_target(self, pos_bbox_targets):
        # only calculate pos centerness targets, otherwise there may be nan
        left_right = pos_bbox_targets[:, [0, 2]]
        top_bottom = pos_bbox_targets[:, [1, 3]]
        centerness_targets = (
            left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * (
                top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
        return torch.sqrt(centerness_targets)