geometry.py 3 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
import torch


def bbox_overlaps(bboxes1, bboxes2, mode='iou', is_aligned=False):
    """Calculate overlap between two set of bboxes.

    If ``is_aligned`` is ``False``, then calculate the ious between each bbox
    of bboxes1 and bboxes2, otherwise the ious between each aligned pair of
    bboxes1 and bboxes2.

    Args:
12
13
14
        bboxes1 (Tensor): shape (m, 4) in <x1, y1, x2, y2> format.
        bboxes2 (Tensor): shape (n, 4) in <x1, y1, x2, y2> format.
            If is_aligned is ``True``, then m and n must be equal.
Kai Chen's avatar
Kai Chen committed
15
16
17
18
        mode (str): "iou" (intersection over union) or iof (intersection over
            foreground).

    Returns:
ZHANGQIANYI's avatar
ZHANGQIANYI committed
19
        ious(Tensor): shape (m, n) if is_aligned == False else shape (m, 1)
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

    Example:
        >>> bboxes1 = torch.FloatTensor([
        >>>     [0, 0, 10, 10],
        >>>     [10, 10, 20, 20],
        >>>     [32, 32, 38, 42],
        >>> ])
        >>> bboxes2 = torch.FloatTensor([
        >>>     [0, 0, 10, 20],
        >>>     [0, 10, 10, 19],
        >>>     [10, 10, 20, 20],
        >>> ])
        >>> bbox_overlaps(bboxes1, bboxes2)
        tensor([[0.5238, 0.0500, 0.0041],
                [0.0323, 0.0452, 1.0000],
                [0.0000, 0.0000, 0.0000]])

    Example:
        >>> empty = torch.FloatTensor([])
        >>> nonempty = torch.FloatTensor([
        >>>     [0, 0, 10, 9],
        >>> ])
        >>> assert tuple(bbox_overlaps(empty, nonempty).shape) == (0, 1)
        >>> assert tuple(bbox_overlaps(nonempty, empty).shape) == (1, 0)
        >>> assert tuple(bbox_overlaps(empty, empty).shape) == (0, 0)
Kai Chen's avatar
Kai Chen committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    """

    assert mode in ['iou', 'iof']

    rows = bboxes1.size(0)
    cols = bboxes2.size(0)
    if is_aligned:
        assert rows == cols

    if rows * cols == 0:
        return bboxes1.new(rows, 1) if is_aligned else bboxes1.new(rows, cols)

    if is_aligned:
        lt = torch.max(bboxes1[:, :2], bboxes2[:, :2])  # [rows, 2]
        rb = torch.min(bboxes1[:, 2:], bboxes2[:, 2:])  # [rows, 2]

        wh = (rb - lt + 1).clamp(min=0)  # [rows, 2]
        overlap = wh[:, 0] * wh[:, 1]
        area1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * (
            bboxes1[:, 3] - bboxes1[:, 1] + 1)

        if mode == 'iou':
            area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * (
                bboxes2[:, 3] - bboxes2[:, 1] + 1)
            ious = overlap / (area1 + area2 - overlap)
        else:
            ious = overlap / area1
    else:
        lt = torch.max(bboxes1[:, None, :2], bboxes2[:, :2])  # [rows, cols, 2]
        rb = torch.min(bboxes1[:, None, 2:], bboxes2[:, 2:])  # [rows, cols, 2]

        wh = (rb - lt + 1).clamp(min=0)  # [rows, cols, 2]
        overlap = wh[:, :, 0] * wh[:, :, 1]
        area1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * (
            bboxes1[:, 3] - bboxes1[:, 1] + 1)

        if mode == 'iou':
            area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * (
                bboxes2[:, 3] - bboxes2[:, 1] + 1)
            ious = overlap / (area1[:, None] + area2 - overlap)
        else:
            ious = overlap / (area1[:, None])

    return ious