ssd512_voc.py 3.92 KB
Newer Older
yhcao6's avatar
yhcao6 committed
1
# model settings
yhcao6's avatar
fix  
yhcao6 committed
2
input_size = 512
yhcao6's avatar
yhcao6 committed
3
4
5
6
7
model = dict(
    type='SingleStageDetector',
    pretrained='data/vgg_backbone.pth',
    backbone=dict(
        type='SSDVGG',
yhcao6's avatar
fix  
yhcao6 committed
8
        input_size=input_size,
yhcao6's avatar
yhcao6 committed
9
10
11
12
13
14
15
16
17
        depth=16,
        with_last_pool=False,
        ceil_mode=True,
        out_indices=(3, 4),
        out_feature_indices=(22, 34),
        l2_norm_scale=20),
    neck=None,
    bbox_head=dict(
        type='SSDHead',
yhcao6's avatar
fix  
yhcao6 committed
18
        input_size=input_size,
yhcao6's avatar
yhcao6 committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
        in_channels=(512, 1024, 512, 256, 256, 256, 256),
        num_classes=81,
        anchor_strides=(8, 16, 32, 64, 128, 256, 512),
        basesize_ratio_range=(0.1, 0.9),
        anchor_ratios=([2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]),
        target_means=(.0, .0, .0, .0),
        target_stds=(0.1, 0.1, 0.2, 0.2)))
train_cfg = dict(
    assigner=dict(
        type='MaxIoUAssigner',
        pos_iou_thr=0.5,
        neg_iou_thr=0.5,
        min_pos_iou=0.,
        ignore_iof_thr=-1,
        gt_max_assign_all=False),
    smoothl1_beta=1.,
    allowed_border=-1,
    pos_weight=-1,
    neg_pos_ratio=3,
    debug=False)
test_cfg = dict(
    nms=dict(type='nms', iou_thr=0.45),
    min_bbox_size=0,
    score_thr=0.02,
    max_per_img=200)
# model training and testing settings
# dataset settings
yhcao6's avatar
fix  
yhcao6 committed
46
47
dataset_type = 'VOCDataset'
data_root = 'data/VOCdevkit/'
yhcao6's avatar
yhcao6 committed
48
49
50
51
52
53
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
data = dict(
    imgs_per_gpu=8,
    workers_per_gpu=3,
    train=dict(
        type='RepeatDataset',
yhcao6's avatar
fix  
yhcao6 committed
54
        times=20,
yhcao6's avatar
yhcao6 committed
55
56
        dataset=dict(
            type=dataset_type,
yhcao6's avatar
fix  
yhcao6 committed
57
58
59
60
61
            ann_file=[
                data_root + 'VOC2007/ImageSets/Main/trainval.txt',
                data_root + 'VOC2012/ImageSets/Main/trainval.txt'
            ],
            img_prefix=[data_root + 'VOC2007/', data_root + 'VOC2012/'],
yhcao6's avatar
yhcao6 committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
            img_scale=(512, 512),
            img_norm_cfg=img_norm_cfg,
            size_divisor=None,
            flip_ratio=0.5,
            with_mask=False,
            with_crowd=False,
            with_label=True,
            test_mode=False,
            extra_aug=dict(
                photo_metric_distortion=dict(
                    brightness_delta=32,
                    contrast_range=(0.5, 1.5),
                    saturation_range=(0.5, 1.5),
                    hue_delta=18),
                expand=dict(
                    mean=img_norm_cfg['mean'],
                    to_rgb=img_norm_cfg['to_rgb'],
                    ratio_range=(1, 4)),
                random_crop=dict(
                    min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3)),
yhcao6's avatar
fix  
yhcao6 committed
82
            resize_keep_ratio=False)),
yhcao6's avatar
yhcao6 committed
83
84
    val=dict(
        type=dataset_type,
yhcao6's avatar
fix  
yhcao6 committed
85
86
        ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt',
        img_prefix=data_root + 'VOC2007/',
yhcao6's avatar
yhcao6 committed
87
88
89
90
91
92
93
94
95
96
        img_scale=(512, 512),
        img_norm_cfg=img_norm_cfg,
        size_divisor=None,
        flip_ratio=0,
        with_mask=False,
        with_label=False,
        test_mode=True,
        resize_keep_ratio=False),
    test=dict(
        type=dataset_type,
yhcao6's avatar
fix  
yhcao6 committed
97
98
        ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt',
        img_prefix=data_root + 'VOC2007/',
yhcao6's avatar
yhcao6 committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        img_scale=(512, 512),
        img_norm_cfg=img_norm_cfg,
        size_divisor=None,
        flip_ratio=0,
        with_mask=False,
        with_label=False,
        test_mode=True,
        resize_keep_ratio=False))
# optimizer
optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4)
optimizer_config = dict()
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
    step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/ssd512_voc'
load_from = None
resume_from = None
workflow = [('train', 1)]