misc.py 3.38 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
from functools import partial

pangjm's avatar
pangjm committed
3
4
import mmcv
import numpy as np
Kai Chen's avatar
Kai Chen committed
5
from six.moves import map, zip
pangjm's avatar
pangjm committed
6

Kai Chen's avatar
Kai Chen committed
7
8
9
10
def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
    num_imgs = tensor.size(0)
    mean = np.array(mean, dtype=np.float32)
    std = np.array(std, dtype=np.float32)
pangjm's avatar
pangjm committed
11
    imgs = []
Kai Chen's avatar
Kai Chen committed
12
    for img_id in range(num_imgs):
pangjm's avatar
pangjm committed
13
        img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
Kai Chen's avatar
Kai Chen committed
14
        img = mmcv.imdenorm(img, mean, std, to_bgr=to_rgb).astype(np.uint8)
pangjm's avatar
pangjm committed
15
16
17
18
        imgs.append(np.ascontiguousarray(img))
    return imgs


Kai Chen's avatar
Kai Chen committed
19
20
21
22
def multi_apply(func, *args, **kwargs):
    pfunc = partial(func, **kwargs) if kwargs else func
    map_results = map(pfunc, *args)
    return tuple(map(list, zip(*map_results)))
pangjm's avatar
pangjm committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36


def unmap(data, count, inds, fill=0):
    """ Unmap a subset of item (data) back to the original set of items (of
    size count) """
    if data.dim() == 1:
        ret = data.new_full((count, ), fill)
        ret[inds] = data
    else:
        new_size = (count, ) + data.size()[1:]
        ret = data.new_full(new_size, fill)
        ret[inds, :] = data
    return ret

Kai Chen's avatar
Kai Chen committed
37

pangjm's avatar
pangjm committed
38
39
40
41
42
43
44
45
46
def xyxy2xywh(bbox):
    _bbox = bbox.tolist()
    return [
        _bbox[0],
        _bbox[1],
        _bbox[2] - _bbox[0] + 1,
        _bbox[3] - _bbox[1] + 1,
    ]

Kai Chen's avatar
Kai Chen committed
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def proposal2json(dataset, results):
    json_results = []
    for idx in range(len(dataset)):
        img_id = dataset.img_ids[idx]
        bboxes = results[idx]
        for i in range(bboxes.shape[0]):
            data = dict()
            data['image_id'] = img_id
            data['bbox'] = xyxy2xywh(bboxes[i])
            data['score'] = float(bboxes[i][4])
            data['category_id'] = 1
            json_results.append(data)
    return json_results


pangjm's avatar
pangjm committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
def det2json(dataset, results):
    json_results = []
    for idx in range(len(dataset)):
        img_id = dataset.img_ids[idx]
        result = results[idx]
        for label in range(len(result)):
            bboxes = result[label]
            for i in range(bboxes.shape[0]):
                data = dict()
                data['image_id'] = img_id
                data['bbox'] = xyxy2xywh(bboxes[i])
                data['score'] = float(bboxes[i][4])
                data['category_id'] = dataset.cat_ids[label]
                json_results.append(data)
    return json_results


def segm2json(dataset, results):
    json_results = []
    for idx in range(len(dataset)):
        img_id = dataset.img_ids[idx]
        det, seg = results[idx]
        for label in range(len(det)):
            bboxes = det[label]
            segms = seg[label]
            for i in range(bboxes.shape[0]):
                data = dict()
                data['image_id'] = img_id
                data['bbox'] = xyxy2xywh(bboxes[i])
                data['score'] = float(bboxes[i][4])
                data['category_id'] = dataset.cat_ids[label]
                segms[i]['counts'] = segms[i]['counts'].decode()
                data['segmentation'] = segms[i]
                json_results.append(data)
    return json_results


def results2json(dataset, results, out_file):
    if isinstance(results[0], list):
        json_results = det2json(dataset, results)
    elif isinstance(results[0], tuple):
        json_results = segm2json(dataset, results)
    elif isinstance(results[0], np.ndarray):
        json_results = proposal2json(dataset, results)
    else:
        raise TypeError('invalid type of results')
    mmcv.dump(json_results, out_file)