hooks.py 8.45 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
import os
import os.path as osp
import shutil
import time

import mmcv
import numpy as np
import torch
from mmcv.torchpack import Hook
Kai Chen's avatar
Kai Chen committed
10
from mmdet.datasets.loader import collate
pangjm's avatar
pangjm committed
11
from mmdet.nn.parallel import scatter
Kai Chen's avatar
Kai Chen committed
12
13
from pycocotools.cocoeval import COCOeval

pangjm's avatar
pangjm committed
14
15
from ..eval import eval_recalls

Kai Chen's avatar
Kai Chen committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

class EmptyCacheHook(Hook):

    def before_epoch(self, runner):
        torch.cuda.empty_cache()

    def after_epoch(self, runner):
        torch.cuda.empty_cache()


class DistEvalHook(Hook):

    def __init__(self, dataset, interval=1):
        self.dataset = dataset
        self.interval = interval
        self.lock_dir = None

    def _barrier(self, rank, world_size):
        """Due to some issues with `torch.distributed.barrier()`, we have to
        implement this ugly barrier function.
        """
        if rank == 0:
            for i in range(1, world_size):
                tmp = osp.join(self.lock_dir, '{}.pkl'.format(i))
                while not (osp.exists(tmp)):
                    time.sleep(1)
            for i in range(1, world_size):
                tmp = osp.join(self.lock_dir, '{}.pkl'.format(i))
                os.remove(tmp)
        else:
            tmp = osp.join(self.lock_dir, '{}.pkl'.format(rank))
            mmcv.dump([], tmp)
            while osp.exists(tmp):
                time.sleep(1)

    def before_run(self, runner):
        self.lock_dir = osp.join(runner.work_dir, '.lock_map_hook')
        if runner.rank == 0:
            if osp.exists(self.lock_dir):
                shutil.rmtree(self.lock_dir)
            mmcv.mkdir_or_exist(self.lock_dir)

    def after_train_epoch(self, runner):
        if not self.every_n_epochs(runner, self.interval):
            return
        runner.model.eval()
        results = [None for _ in range(len(self.dataset))]
        prog_bar = mmcv.ProgressBar(len(self.dataset))
        for idx in range(runner.rank, len(self.dataset), runner.world_size):
            data = self.dataset[idx]
            device_id = torch.cuda.current_device()
            imgs_data = tuple(
                scatter(collate([data], samples_per_gpu=1), [device_id])[0])

            # compute output
            with torch.no_grad():
                result = runner.model(
                    *imgs_data,
                    return_loss=False,
                    return_bboxes=True,
                    rescale=True)
            results[idx] = result

            batch_size = runner.world_size
            for _ in range(batch_size):
                prog_bar.update()

        if runner.rank == 0:
            print('\n')
            self._barrier(runner.rank, runner.world_size)
            for i in range(1, runner.world_size):
                tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i))
                tmp_results = mmcv.load(tmp_file)
                for idx in range(i, len(results), runner.world_size):
                    results[idx] = tmp_results[idx]
                os.remove(tmp_file)
            self.evaluate(runner, results)
        else:
            tmp_file = osp.join(runner.work_dir,
                                'temp_{}.pkl'.format(runner.rank))
            mmcv.dump(results, tmp_file)
            self._barrier(runner.rank, runner.world_size)
        self._barrier(runner.rank, runner.world_size)

    def evaluate(self):
        raise NotImplementedError


class CocoEvalMixin(object):

    def _xyxy2xywh(self, bbox):
        _bbox = bbox.tolist()
        return [
            _bbox[0],
            _bbox[1],
            _bbox[2] - _bbox[0] + 1,
            _bbox[3] - _bbox[1] + 1,
        ]

    def det2json(self, dataset, results):
        json_results = []
        for idx in range(len(dataset)):
            img_id = dataset.img_ids[idx]
            result = results[idx]
            for label in range(len(result)):
                bboxes = result[label]
                for i in range(bboxes.shape[0]):
                    data = dict()
                    data['image_id'] = img_id
                    data['bbox'] = self._xyxy2xywh(bboxes[i])
                    data['score'] = float(bboxes[i][4])
                    data['category_id'] = dataset.cat_ids[label]
                    json_results.append(data)
        return json_results

    def segm2json(self, dataset, results):
        json_results = []
        for idx in range(len(dataset)):
            img_id = dataset.img_ids[idx]
            det, seg = results[idx]
            for label in range(len(det)):
                bboxes = det[label]
                segms = seg[label]
                for i in range(bboxes.shape[0]):
                    data = dict()
                    data['image_id'] = img_id
                    data['bbox'] = self._xyxy2xywh(bboxes[i])
                    data['score'] = float(bboxes[i][4])
                    data['category_id'] = dataset.cat_ids[label]
                    segms[i]['counts'] = segms[i]['counts'].decode()
                    data['segmentation'] = segms[i]
                    json_results.append(data)
        return json_results

    def proposal2json(self, dataset, results):
        json_results = []
        for idx in range(len(dataset)):
            img_id = dataset.img_ids[idx]
            bboxes = results[idx]
            for i in range(bboxes.shape[0]):
                data = dict()
                data['image_id'] = img_id
                data['bbox'] = self._xyxy2xywh(bboxes[i])
                data['score'] = float(bboxes[i][4])
                data['category_id'] = 1
                json_results.append(data)
        return json_results

    def results2json(self, dataset, results, out_file):
        if isinstance(results[0], list):
            json_results = self.det2json(dataset, results)
        elif isinstance(results[0], tuple):
            json_results = self.segm2json(dataset, results)
        elif isinstance(results[0], np.ndarray):
            json_results = self.proposal2json(dataset, results)
        else:
            raise TypeError('invalid type of results')
        mmcv.dump(json_results, out_file, file_format='json')


class DistEvalRecallHook(DistEvalHook):

    def __init__(self,
                 dataset,
                 proposal_nums=(100, 300, 1000),
                 iou_thrs=np.arange(0.5, 0.96, 0.05)):
        super(DistEvalRecallHook, self).__init__(dataset)
        self.proposal_nums = np.array(proposal_nums, dtype=np.int32)
        self.iou_thrs = np.array(iou_thrs, dtype=np.float32)

    def evaluate(self, runner, results):
        # official coco evaluation is too slow, here we use our own
        # implementation, which may get slightly different results
        gt_bboxes = []
        for i in range(len(self.dataset)):
            img_id = self.dataset.img_ids[i]
            ann_ids = self.dataset.coco.getAnnIds(imgIds=img_id)
            ann_info = self.dataset.coco.loadAnns(ann_ids)
            if len(ann_info) == 0:
                gt_bboxes.append(np.zeros((0, 4)))
                continue
            bboxes = []
            for ann in ann_info:
                if ann.get('ignore', False) or ann['iscrowd']:
                    continue
                x1, y1, w, h = ann['bbox']
                bboxes.append([x1, y1, x1 + w - 1, y1 + h - 1])
            bboxes = np.array(bboxes, dtype=np.float32)
            if bboxes.shape[0] == 0:
                bboxes = np.zeros((0, 4))
            gt_bboxes.append(bboxes)

        recalls = eval_recalls(
            gt_bboxes,
            results,
            self.proposal_nums,
            self.iou_thrs,
            print_summary=False)
        ar = recalls.mean(axis=1)
        for i, num in enumerate(self.proposal_nums):
            runner.log_buffer.output['AR@{}'.format(num)] = ar[i]
        runner.log_buffer.ready = True


class CocoDistEvalmAPHook(DistEvalHook, CocoEvalMixin):

    def evaluate(self, runner, results):
        tmp_file = osp.join(runner.work_dir, 'temp_0.json')
        self.results2json(self.dataset, results, tmp_file)

        res_types = ['bbox', 'segm'] if runner.model.with_mask else ['bbox']
        cocoGt = self.dataset.coco
        cocoDt = cocoGt.loadRes(tmp_file)
        imgIds = cocoGt.getImgIds()
        for res_type in res_types:
            iou_type = res_type
            cocoEval = COCOeval(cocoGt, cocoDt, iou_type)
            cocoEval.params.imgIds = imgIds
            cocoEval.evaluate()
            cocoEval.accumulate()
            cocoEval.summarize()
            field = '{}_mAP'.format(res_type)
            runner.log_buffer.output[field] = cocoEval.stats[0]
        runner.log_buffer.ready = True
        os.remove(tmp_file)