retinanet_r50_fpn_1x.py 3.13 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
# model settings
model = dict(
    type='RetinaNet',
    pretrained='modelzoo://resnet50',
    backbone=dict(
Kai Chen's avatar
Kai Chen committed
6
        type='ResNet',
Kai Chen's avatar
Kai Chen committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        style='pytorch'),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        start_level=1,
        add_extra_convs=True,
        num_outs=5),
    bbox_head=dict(
        type='RetinaHead',
        num_classes=81,
        in_channels=256,
        stacked_convs=4,
        feat_channels=256,
Kai Chen's avatar
Kai Chen committed
25
        octave_base_scale=4,
Kai Chen's avatar
Kai Chen committed
26
        scales_per_octave=3,
Kai Chen's avatar
Kai Chen committed
27
        anchor_ratios=[0.5, 1.0, 2.0],
Kai Chen's avatar
Kai Chen committed
28
29
30
31
32
        anchor_strides=[8, 16, 32, 64, 128],
        target_means=[.0, .0, .0, .0],
        target_stds=[1.0, 1.0, 1.0, 1.0]))
# training and testing settings
train_cfg = dict(
Kai Chen's avatar
Kai Chen committed
33
    assigner=dict(
Kai Chen's avatar
Kai Chen committed
34
        pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1),
Kai Chen's avatar
Kai Chen committed
35
36
37
38
39
40
41
42
43
44
    smoothl1_beta=0.11,
    gamma=2.0,
    alpha=0.25,
    allowed_border=-1,
    pos_weight=-1,
    debug=False)
test_cfg = dict(
    nms_pre=1000,
    min_bbox_size=0,
    score_thr=0.05,
Kai Chen's avatar
Kai Chen committed
45
    nms=dict(type='nms', iou_thr=0.5),
Kai Chen's avatar
Kai Chen committed
46
47
48
    max_per_img=100)
# dataset settings
dataset_type = 'CocoDataset'
Kai Chen's avatar
Kai Chen committed
49
data_root = 'data/coco/'
Kai Chen's avatar
Kai Chen committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
        flip_ratio=0.5,
        with_mask=False,
        with_crowd=False,
        with_label=True),
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
        flip_ratio=0,
        with_mask=False,
        with_crowd=False,
        with_label=True),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
        flip_ratio=0,
        with_mask=False,
        with_crowd=False,
        with_label=False,
        test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
    step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
Kai Chen's avatar
Kai Chen committed
102
    interval=50,
Kai Chen's avatar
Kai Chen committed
103
104
    hooks=[
        dict(type='TextLoggerHook'),
Kai Chen's avatar
Kai Chen committed
105
        # dict(type='TensorboardLoggerHook')
Kai Chen's avatar
Kai Chen committed
106
107
108
109
110
    ])
# yapf:enable
# runtime settings
total_epochs = 12
device_ids = range(8)
Kai Chen's avatar
Kai Chen committed
111
dist_params = dict(backend='nccl')
Kai Chen's avatar
Kai Chen committed
112
log_level = 'INFO'
Kai Chen's avatar
Kai Chen committed
113
work_dir = './work_dirs/retinanet_r50_fpn_1x'
Kai Chen's avatar
Kai Chen committed
114
115
116
load_from = None
resume_from = None
workflow = [('train', 1)]