res_layer.py 2.11 KB
Newer Older
myownskyW7's avatar
myownskyW7 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import logging

import torch.nn as nn
from mmcv.cnn import constant_init, kaiming_init
from mmcv.runner import load_checkpoint

from ..backbones import ResNet, make_res_layer
from ..registry import SHARED_HEADS


@SHARED_HEADS.register_module
class ResLayer(nn.Module):

    def __init__(self,
                 depth,
                 stage=3,
                 stride=2,
                 dilation=1,
                 style='pytorch',
20
                 normalize=dict(type='BN', requires_grad=True),
myownskyW7's avatar
myownskyW7 committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
                 norm_eval=True,
                 with_cp=False,
                 dcn=None):
        super(ResLayer, self).__init__()
        self.norm_eval = norm_eval
        self.normalize = normalize
        self.stage = stage
        block, stage_blocks = ResNet.arch_settings[depth]
        stage_block = stage_blocks[stage]
        planes = 64 * 2**stage
        inplanes = 64 * 2**(stage - 1) * block.expansion

        res_layer = make_res_layer(
            block,
            inplanes,
            planes,
            stage_block,
            stride=stride,
            dilation=dilation,
            style=style,
            with_cp=with_cp,
            normalize=self.normalize,
            dcn=dcn)
        self.add_module('layer{}'.format(stage + 1), res_layer)

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = logging.getLogger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, nn.BatchNorm2d):
                    constant_init(m, 1)
        else:
            raise TypeError('pretrained must be a str or None')

    def forward(self, x):
        res_layer = getattr(self, 'layer{}'.format(self.stage + 1))
        out = res_layer(x)
        return out

    def train(self, mode=True):
        super(ResLayer, self).train(mode)
        if self.norm_eval:
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()