train.py 3.85 KB
Newer Older
pangjm's avatar
pangjm committed
1
from __future__ import division
Kai Chen's avatar
Kai Chen committed
2

pangjm's avatar
pangjm committed
3
import argparse
Kai Chen's avatar
Kai Chen committed
4
from collections import OrderedDict
pangjm's avatar
pangjm committed
5
6
7

import torch
from mmcv import Config
Kai Chen's avatar
Kai Chen committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from mmcv.torchpack import Runner, obj_from_dict

from mmdet import datasets
from mmdet.core import init_dist, DistOptimizerHook, DistSamplerSeedHook
from mmdet.datasets.loader import build_dataloader
from mmdet.models import build_detector
from mmdet.nn.parallel import MMDataParallel, MMDistributedDataParallel


def parse_losses(losses):
    log_vars = OrderedDict()
    for loss_name, loss_value in losses.items():
        if isinstance(loss_value, torch.Tensor):
            log_vars[loss_name] = loss_value.mean()
        elif isinstance(loss_value, list):
            log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
        else:
            raise TypeError(
                '{} is not a tensor or list of tensors'.format(loss_name))

    loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key)

    log_vars['loss'] = loss
    for name in log_vars:
        log_vars[name] = log_vars[name].item()

    return loss, log_vars


def batch_processor(model, data, train_mode, args=None):
    losses = model(**data)
    loss, log_vars = parse_losses(losses)

    outputs = dict(
        loss=loss / args.world_size,
        log_vars=log_vars,
        num_samples=len(data['img'].data))

    return outputs
pangjm's avatar
pangjm committed
47
48
49


def parse_args():
Kai Chen's avatar
Kai Chen committed
50
    parser = argparse.ArgumentParser(description='Train a detector')
pangjm's avatar
pangjm committed
51
52
    parser.add_argument('config', help='train config file path')
    parser.add_argument(
Kai Chen's avatar
Kai Chen committed
53
54
55
56
57
58
        '--validate',
        action='store_true',
        help='whether to add a validate phase')
    parser.add_argument(
        '--dist', action='store_true', help='use distributed training or not')
    parser.add_argument('--world-size', default=1, type=int)
pangjm's avatar
pangjm committed
59
60
61
62
63
64
65
66
67
68
    parser.add_argument('--rank', default=0, type=int)
    args = parser.parse_args()

    return args


args = parse_args()


def main():
Kai Chen's avatar
Kai Chen committed
69
70
71
72
73
    # get config from file
    cfg = Config.fromfile(args.config)
    cfg.update(world_size=args.world_size, rank=args.rank)

    # init distributed environment if necessary
pangjm's avatar
pangjm committed
74
75
    if args.dist:
        print('Enable distributed training.')
Kai Chen's avatar
Kai Chen committed
76
        init_dist(args.world_size, args.rank, **cfg.dist_params)
pangjm's avatar
pangjm committed
77
78
79
    else:
        print('Disabled distributed training.')

Kai Chen's avatar
Kai Chen committed
80
81
82
83
84
85
86
    # prepare data loaders
    train_dataset = obj_from_dict(cfg.data.train, datasets)
    data_loaders = [
        build_dataloader(
            train_dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu,
            len(cfg.device_ids), args.dist, cfg.world_size, cfg.rank)
    ]
pangjm's avatar
pangjm committed
87
    if args.validate:
Kai Chen's avatar
Kai Chen committed
88
89
90
91
92
        val_dataset = obj_from_dict(cfg.data.val, datasets)
        data_loaders.append(
            build_dataloader(
                val_dataset, cfg.data.imgs_per_gpu, cfg.data.workers_per_gpu,
                len(cfg.device_ids), args.dist, cfg.world_size, cfg.rank))
pangjm's avatar
pangjm committed
93
94

    # build model
Kai Chen's avatar
Kai Chen committed
95
96
    model = build_detector(
        cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
pangjm's avatar
pangjm committed
97
    if args.dist:
Kai Chen's avatar
Kai Chen committed
98
99
        model = MMDistributedDataParallel(
            model, device_ids=[cfg.rank], broadcast_buffers=False).cuda()
pangjm's avatar
pangjm committed
100
    else:
Kai Chen's avatar
Kai Chen committed
101
        model = MMDataParallel(model, device_ids=cfg.device_ids).cuda()
pangjm's avatar
pangjm committed
102

Kai Chen's avatar
Kai Chen committed
103
    # build runner
pangjm's avatar
pangjm committed
104
105
    runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir,
                    cfg.log_level)
Kai Chen's avatar
Kai Chen committed
106
107
108
109
    # register hooks
    optimizer_config = DistOptimizerHook(
        **cfg.optimizer_config) if args.dist else cfg.optimizer_config
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
pangjm's avatar
pangjm committed
110
111
112
                                   cfg.checkpoint_config, cfg.log_config)
    if args.dist:
        runner.register_hook(DistSamplerSeedHook())
Kai Chen's avatar
Kai Chen committed
113

pangjm's avatar
pangjm committed
114
115
116
117
    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
Kai Chen's avatar
Kai Chen committed
118
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs, args=args)
pangjm's avatar
pangjm committed
119
120


Kai Chen's avatar
Kai Chen committed
121
if __name__ == '__main__':
pangjm's avatar
pangjm committed
122
    main()