scatter_gather.py 2.21 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
import torch
from ._functions import Scatter
from torch.nn.parallel._functions import Scatter as OrigScatter
pangjm's avatar
pangjm committed
4
from mmdet.datasets.utils import DataContainer
Kai Chen's avatar
Kai Chen committed
5
6
7
8
9
10
11
12
13
14
15
16


def scatter(inputs, target_gpus, dim=0):
    """Scatter inputs to target gpus.

    The only difference from original :func:`scatter` is to add support for
    :type:`~mmdet.DataContainer`.
    """

    def scatter_map(obj):
        if isinstance(obj, torch.Tensor):
            return OrigScatter.apply(target_gpus, None, dim, obj)
Kai Chen's avatar
Kai Chen committed
17
18
19
20
21
22
        if isinstance(obj, DataContainer):
            # print('data container', obj)
            if obj.cpu_only:
                return obj.data
            else:
                return Scatter.forward(target_gpus, obj.data)
Kai Chen's avatar
Kai Chen committed
23
24
25
        if isinstance(obj, tuple) and len(obj) > 0:
            return list(zip(*map(scatter_map, obj)))
        if isinstance(obj, list) and len(obj) > 0:
Kai Chen's avatar
Kai Chen committed
26
27
28
29
            # print('list', obj)
            out = list(map(list, zip(*map(scatter_map, obj))))
            # print('list out', out)
            return out
Kai Chen's avatar
Kai Chen committed
30
        if isinstance(obj, dict) and len(obj) > 0:
Kai Chen's avatar
Kai Chen committed
31
32
33
34
            # print('dict\n', obj)
            out = list(map(type(obj), zip(*map(scatter_map, obj.items()))))
            # print('dict output\n', out)
            return out
Kai Chen's avatar
Kai Chen committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        return [obj for targets in target_gpus]

    # After scatter_map is called, a scatter_map cell will exist. This cell
    # has a reference to the actual function scatter_map, which has references
    # to a closure that has a reference to the scatter_map cell (because the
    # fn is recursive). To avoid this reference cycle, we set the function to
    # None, clearing the cell
    try:
        return scatter_map(inputs)
    finally:
        scatter_map = None


def scatter_kwargs(inputs, kwargs, target_gpus, dim=0):
    """Scatter with support for kwargs dictionary"""
    inputs = scatter(inputs, target_gpus, dim) if inputs else []
    kwargs = scatter(kwargs, target_gpus, dim) if kwargs else []
    if len(inputs) < len(kwargs):
        inputs.extend([() for _ in range(len(kwargs) - len(inputs))])
    elif len(kwargs) < len(inputs):
        kwargs.extend([{} for _ in range(len(inputs) - len(kwargs))])
    inputs = tuple(inputs)
    kwargs = tuple(kwargs)
    return inputs, kwargs