misc.py 3.39 KB
Newer Older
pangjm's avatar
pangjm committed
1
2
3
4
5
6
7
import mmcv
import numpy as np
import torch

__all__ = ['tensor2imgs', 'unique', 'unmap', 'results2json']


Kai Chen's avatar
Kai Chen committed
8
9
10
11
def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
    num_imgs = tensor.size(0)
    mean = np.array(mean, dtype=np.float32)
    std = np.array(std, dtype=np.float32)
pangjm's avatar
pangjm committed
12
    imgs = []
Kai Chen's avatar
Kai Chen committed
13
    for img_id in range(num_imgs):
pangjm's avatar
pangjm committed
14
        img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
Kai Chen's avatar
Kai Chen committed
15
        img = mmcv.imdenorm(img, mean, std, to_bgr=to_rgb).astype(np.uint8)
pangjm's avatar
pangjm committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
        imgs.append(np.ascontiguousarray(img))
    return imgs


def unique(tensor):
    if tensor.is_cuda:
        u_tensor = np.unique(tensor.cpu().numpy())
        return tensor.new_tensor(u_tensor)
    else:
        return torch.unique(tensor)


def unmap(data, count, inds, fill=0):
    """ Unmap a subset of item (data) back to the original set of items (of
    size count) """
    if data.dim() == 1:
        ret = data.new_full((count, ), fill)
        ret[inds] = data
    else:
        new_size = (count, ) + data.size()[1:]
        ret = data.new_full(new_size, fill)
        ret[inds, :] = data
    return ret

Kai Chen's avatar
Kai Chen committed
40

pangjm's avatar
pangjm committed
41
42
43
44
45
46
47
48
49
def xyxy2xywh(bbox):
    _bbox = bbox.tolist()
    return [
        _bbox[0],
        _bbox[1],
        _bbox[2] - _bbox[0] + 1,
        _bbox[3] - _bbox[1] + 1,
    ]

Kai Chen's avatar
Kai Chen committed
50

pangjm's avatar
pangjm committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
def det2json(dataset, results):
    json_results = []
    for idx in range(len(dataset)):
        img_id = dataset.img_ids[idx]
        result = results[idx]
        for label in range(len(result)):
            bboxes = result[label]
            for i in range(bboxes.shape[0]):
                data = dict()
                data['image_id'] = img_id
                data['bbox'] = xyxy2xywh(bboxes[i])
                data['score'] = float(bboxes[i][4])
                data['category_id'] = dataset.cat_ids[label]
                json_results.append(data)
    return json_results


def segm2json(dataset, results):
    json_results = []
    for idx in range(len(dataset)):
        img_id = dataset.img_ids[idx]
        det, seg = results[idx]
        for label in range(len(det)):
            bboxes = det[label]
            segms = seg[label]
            for i in range(bboxes.shape[0]):
                data = dict()
                data['image_id'] = img_id
                data['bbox'] = xyxy2xywh(bboxes[i])
                data['score'] = float(bboxes[i][4])
                data['category_id'] = dataset.cat_ids[label]
                segms[i]['counts'] = segms[i]['counts'].decode()
                data['segmentation'] = segms[i]
                json_results.append(data)
    return json_results


def proposal2json(dataset, results):
    json_results = []
    for idx in range(len(dataset)):
        img_id = dataset.img_ids[idx]
        bboxes = results[idx]
        for i in range(bboxes.shape[0]):
            data = dict()
            data['image_id'] = img_id
            data['bbox'] = xyxy2xywh(bboxes[i])
            data['score'] = float(bboxes[i][4])
            data['category_id'] = 1
            json_results.append(data)
    return json_results


def results2json(dataset, results, out_file):
    if isinstance(results[0], list):
        json_results = det2json(dataset, results)
    elif isinstance(results[0], tuple):
        json_results = segm2json(dataset, results)
    elif isinstance(results[0], np.ndarray):
        json_results = proposal2json(dataset, results)
    else:
        raise TypeError('invalid type of results')
    mmcv.dump(json_results, out_file)