htc.py 17.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import torch.nn.functional as F

from .cascade_rcnn import CascadeRCNN
from .. import builder
from ..registry import DETECTORS
from mmdet.core import (bbox2roi, bbox2result, build_assigner, build_sampler,
                        merge_aug_masks)


@DETECTORS.register_module
class HybridTaskCascade(CascadeRCNN):

    def __init__(self,
                 num_stages,
                 backbone,
                 semantic_roi_extractor=None,
                 semantic_head=None,
                 semantic_fusion=('bbox', 'mask'),
                 interleaved=True,
                 mask_info_flow=True,
                 **kwargs):
        super(HybridTaskCascade, self).__init__(num_stages, backbone, **kwargs)
        assert self.with_bbox and self.with_mask
        assert not self.with_shared_head  # shared head not supported
        if semantic_head is not None:
            self.semantic_roi_extractor = builder.build_roi_extractor(
                semantic_roi_extractor)
            self.semantic_head = builder.build_head(semantic_head)

        self.semantic_fusion = semantic_fusion
        self.interleaved = interleaved
        self.mask_info_flow = mask_info_flow

    @property
    def with_semantic(self):
        if hasattr(self, 'semantic_head') and self.semantic_head is not None:
            return True
        else:
            return False

    def _bbox_forward_train(self,
                            stage,
                            x,
                            sampling_results,
                            gt_bboxes,
                            gt_labels,
                            rcnn_train_cfg,
                            semantic_feat=None):
        rois = bbox2roi([res.bboxes for res in sampling_results])
        bbox_roi_extractor = self.bbox_roi_extractor[stage]
        bbox_head = self.bbox_head[stage]
        bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs],
                                        rois)
        # semantic feature fusion
        # element-wise sum for original features and pooled semantic features
        if self.with_semantic and 'bbox' in self.semantic_fusion:
            bbox_semantic_feat = self.semantic_roi_extractor([semantic_feat],
                                                             rois)
            if bbox_semantic_feat.shape[-2:] != bbox_feats.shape[-2:]:
                bbox_semantic_feat = F.adaptive_avg_pool2d(
                    bbox_semantic_feat, bbox_feats.shape[-2:])
            bbox_feats += bbox_semantic_feat

        cls_score, bbox_pred = bbox_head(bbox_feats)

        bbox_targets = bbox_head.get_target(sampling_results, gt_bboxes,
                                            gt_labels, rcnn_train_cfg)
        loss_bbox = bbox_head.loss(cls_score, bbox_pred, *bbox_targets)
        return loss_bbox, rois, bbox_targets, bbox_pred

    def _mask_forward_train(self,
                            stage,
                            x,
                            sampling_results,
                            gt_masks,
                            rcnn_train_cfg,
                            semantic_feat=None):
        mask_roi_extractor = self.mask_roi_extractor[stage]
        mask_head = self.mask_head[stage]
        pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results])
        mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs],
                                        pos_rois)

        # semantic feature fusion
        # element-wise sum for original features and pooled semantic features
        if self.with_semantic and 'mask' in self.semantic_fusion:
            mask_semantic_feat = self.semantic_roi_extractor([semantic_feat],
                                                             pos_rois)
            if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]:
                mask_semantic_feat = F.adaptive_avg_pool2d(
                    mask_semantic_feat, mask_feats.shape[-2:])
            mask_feats += mask_semantic_feat

        # mask information flow
        # forward all previous mask heads to obtain last_feat, and fuse it
        # with the normal mask feature
        if self.mask_info_flow:
            last_feat = None
            for i in range(stage):
                last_feat = self.mask_head[i](
                    mask_feats, last_feat, return_logits=False)
            mask_pred = mask_head(mask_feats, last_feat, return_feat=False)
        else:
            mask_pred = mask_head(mask_feats)

        mask_targets = mask_head.get_target(sampling_results, gt_masks,
                                            rcnn_train_cfg)
        pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])
        loss_mask = mask_head.loss(mask_pred, mask_targets, pos_labels)
        return loss_mask

    def _bbox_forward_test(self, stage, x, rois, semantic_feat=None):
        bbox_roi_extractor = self.bbox_roi_extractor[stage]
        bbox_head = self.bbox_head[stage]
        bbox_feats = bbox_roi_extractor(
            x[:len(bbox_roi_extractor.featmap_strides)], rois)
        if self.with_semantic and 'bbox' in self.semantic_fusion:
            bbox_semantic_feat = self.semantic_roi_extractor([semantic_feat],
                                                             rois)
            if bbox_semantic_feat.shape[-2:] != bbox_feats.shape[-2:]:
                bbox_semantic_feat = F.adaptive_avg_pool2d(
                    bbox_semantic_feat, bbox_feats.shape[-2:])
            bbox_feats += bbox_semantic_feat
        cls_score, bbox_pred = bbox_head(bbox_feats)
        return cls_score, bbox_pred

    def _mask_forward_test(self, stage, x, bboxes, semantic_feat=None):
        mask_roi_extractor = self.mask_roi_extractor[stage]
        mask_head = self.mask_head[stage]
        mask_rois = bbox2roi([bboxes])
        mask_feats = mask_roi_extractor(
            x[:len(mask_roi_extractor.featmap_strides)], mask_rois)
        if self.with_semantic and 'mask' in self.semantic_fusion:
            mask_semantic_feat = self.semantic_roi_extractor([semantic_feat],
                                                             mask_rois)
            if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]:
                mask_semantic_feat = F.adaptive_avg_pool2d(
                    mask_semantic_feat, mask_feats.shape[-2:])
            mask_feats += mask_semantic_feat
        if self.mask_info_flow:
            last_feat = None
            last_pred = None
            for i in range(stage):
                mask_pred, last_feat = self.mask_head[i](mask_feats, last_feat)
                if last_pred is not None:
                    mask_pred = mask_pred + last_pred
                last_pred = mask_pred
            mask_pred = mask_head(mask_feats, last_feat, return_feat=False)
            if last_pred is not None:
                mask_pred = mask_pred + last_pred
        else:
            mask_pred = mask_head(mask_feats)
        return mask_pred

    def forward_train(self,
                      img,
                      img_meta,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None,
                      gt_masks=None,
                      gt_semantic_seg=None,
                      proposals=None):
        x = self.extract_feat(img)

        losses = dict()

        # RPN part, the same as normal two-stage detectors
        if self.with_rpn:
            rpn_outs = self.rpn_head(x)
            rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta,
                                          self.train_cfg.rpn)
            rpn_losses = self.rpn_head.loss(
                *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
            losses.update(rpn_losses)

178
179
180
            proposal_cfg = self.train_cfg.get('rpn_proposal',
                                              self.test_cfg.rpn)
            proposal_inputs = rpn_outs + (img_meta, proposal_cfg)
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
            proposal_list = self.rpn_head.get_bboxes(*proposal_inputs)
        else:
            proposal_list = proposals

        # semantic segmentation part
        # 2 outputs: segmentation prediction and embedded features
        if self.with_semantic:
            semantic_pred, semantic_feat = self.semantic_head(x)
            loss_seg = self.semantic_head.loss(semantic_pred, gt_semantic_seg)
            losses['loss_semantic_seg'] = loss_seg
        else:
            semantic_feat = None

        for i in range(self.num_stages):
            self.current_stage = i
            rcnn_train_cfg = self.train_cfg.rcnn[i]
            lw = self.train_cfg.stage_loss_weights[i]

            # assign gts and sample proposals
            sampling_results = []
            bbox_assigner = build_assigner(rcnn_train_cfg.assigner)
            bbox_sampler = build_sampler(rcnn_train_cfg.sampler, context=self)
            num_imgs = img.size(0)
            if gt_bboxes_ignore is None:
                gt_bboxes_ignore = [None for _ in range(num_imgs)]

            for j in range(num_imgs):
                assign_result = bbox_assigner.assign(
                    proposal_list[j], gt_bboxes[j], gt_bboxes_ignore[j],
                    gt_labels[j])
                sampling_result = bbox_sampler.sample(
                    assign_result,
                    proposal_list[j],
                    gt_bboxes[j],
                    gt_labels[j],
                    feats=[lvl_feat[j][None] for lvl_feat in x])
                sampling_results.append(sampling_result)

            # bbox head forward and loss
            loss_bbox, rois, bbox_targets, bbox_pred = \
                self._bbox_forward_train(
                    i, x, sampling_results, gt_bboxes, gt_labels,
                    rcnn_train_cfg, semantic_feat)
            roi_labels = bbox_targets[0]

            for name, value in loss_bbox.items():
227
228
                losses['s{}.{}'.format(i, name)] = (
                    value * lw if 'loss' in name else value)
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

            # mask head forward and loss
            if self.with_mask:
                # interleaved execution: use regressed bboxes by the box branch
                # to train the mask branch
                if self.interleaved:
                    pos_is_gts = [res.pos_is_gt for res in sampling_results]
                    with torch.no_grad():
                        proposal_list = self.bbox_head[i].refine_bboxes(
                            rois, roi_labels, bbox_pred, pos_is_gts, img_meta)
                        # re-assign and sample 512 RoIs from 512 RoIs
                        sampling_results = []
                        for j in range(num_imgs):
                            assign_result = bbox_assigner.assign(
                                proposal_list[j], gt_bboxes[j],
                                gt_bboxes_ignore[j], gt_labels[j])
                            sampling_result = bbox_sampler.sample(
                                assign_result,
                                proposal_list[j],
                                gt_bboxes[j],
                                gt_labels[j],
                                feats=[lvl_feat[j][None] for lvl_feat in x])
                            sampling_results.append(sampling_result)
                loss_mask = self._mask_forward_train(i, x, sampling_results,
                                                     gt_masks, rcnn_train_cfg,
                                                     semantic_feat)
                for name, value in loss_mask.items():
256
257
                    losses['s{}.{}'.format(i, name)] = (
                        value * lw if 'loss' in name else value)
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

            # refine bboxes (same as Cascade R-CNN)
            if i < self.num_stages - 1 and not self.interleaved:
                pos_is_gts = [res.pos_is_gt for res in sampling_results]
                with torch.no_grad():
                    proposal_list = self.bbox_head[i].refine_bboxes(
                        rois, roi_labels, bbox_pred, pos_is_gts, img_meta)

        return losses

    def simple_test(self, img, img_meta, proposals=None, rescale=False):
        x = self.extract_feat(img)
        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals

        if self.with_semantic:
            _, semantic_feat = self.semantic_head(x)
        else:
            semantic_feat = None

        img_shape = img_meta[0]['img_shape']
        ori_shape = img_meta[0]['ori_shape']
        scale_factor = img_meta[0]['scale_factor']

        # "ms" in variable names means multi-stage
        ms_bbox_result = {}
        ms_segm_result = {}
        ms_scores = []
        rcnn_test_cfg = self.test_cfg.rcnn

        rois = bbox2roi(proposal_list)
        for i in range(self.num_stages):
            bbox_head = self.bbox_head[i]
            cls_score, bbox_pred = self._bbox_forward_test(
                i, x, rois, semantic_feat=semantic_feat)
            ms_scores.append(cls_score)

            if self.test_cfg.keep_all_stages:
                det_bboxes, det_labels = bbox_head.get_det_bboxes(
                    rois,
                    cls_score,
                    bbox_pred,
                    img_shape,
                    scale_factor,
                    rescale=rescale,
                    nms_cfg=rcnn_test_cfg)
                bbox_result = bbox2result(det_bboxes, det_labels,
                                          bbox_head.num_classes)
                ms_bbox_result['stage{}'.format(i)] = bbox_result

                if self.with_mask:
                    mask_head = self.mask_head[i]
                    if det_bboxes.shape[0] == 0:
                        segm_result = [
                            [] for _ in range(mask_head.num_classes - 1)
                        ]
                    else:
315
316
317
                        _bboxes = (
                            det_bboxes[:, :4] * scale_factor
                            if rescale else det_bboxes)
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
                        mask_pred = self._mask_forward_test(
                            i, x, _bboxes, semantic_feat=semantic_feat)
                        segm_result = mask_head.get_seg_masks(
                            mask_pred, _bboxes, det_labels, rcnn_test_cfg,
                            ori_shape, scale_factor, rescale)
                    ms_segm_result['stage{}'.format(i)] = segm_result

            if i < self.num_stages - 1:
                bbox_label = cls_score.argmax(dim=1)
                rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred,
                                                  img_meta[0])

        cls_score = sum(ms_scores) / float(len(ms_scores))
        det_bboxes, det_labels = self.bbox_head[-1].get_det_bboxes(
            rois,
            cls_score,
            bbox_pred,
            img_shape,
            scale_factor,
            rescale=rescale,
            cfg=rcnn_test_cfg)
        bbox_result = bbox2result(det_bboxes, det_labels,
                                  self.bbox_head[-1].num_classes)
        ms_bbox_result['ensemble'] = bbox_result

        if self.with_mask:
            if det_bboxes.shape[0] == 0:
                segm_result = [
                    [] for _ in range(self.mask_head[-1].num_classes - 1)
                ]
            else:
349
350
351
                _bboxes = (
                    det_bboxes[:, :4] * scale_factor
                    if rescale else det_bboxes)
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

                mask_rois = bbox2roi([_bboxes])
                aug_masks = []
                mask_roi_extractor = self.mask_roi_extractor[-1]
                mask_feats = mask_roi_extractor(
                    x[:len(mask_roi_extractor.featmap_strides)], mask_rois)
                if self.with_semantic and 'mask' in self.semantic_fusion:
                    mask_semantic_feat = self.semantic_roi_extractor(
                        [semantic_feat], mask_rois)
                    mask_feats += mask_semantic_feat
                last_feat = None
                for i in range(self.num_stages):
                    mask_head = self.mask_head[i]
                    if self.mask_info_flow:
                        mask_pred, last_feat = mask_head(mask_feats, last_feat)
                    else:
                        mask_pred = mask_head(mask_feats)
                    aug_masks.append(mask_pred.sigmoid().cpu().numpy())
                merged_masks = merge_aug_masks(aug_masks,
                                               [img_meta] * self.num_stages,
                                               self.test_cfg.rcnn)
                segm_result = self.mask_head[-1].get_seg_masks(
                    merged_masks, _bboxes, det_labels, rcnn_test_cfg,
                    ori_shape, scale_factor, rescale)
            ms_segm_result['ensemble'] = segm_result

        if not self.test_cfg.keep_all_stages:
            if self.with_mask:
                results = (ms_bbox_result['ensemble'],
                           ms_segm_result['ensemble'])
            else:
                results = ms_bbox_result['ensemble']
        else:
            if self.with_mask:
                results = {
                    stage: (ms_bbox_result[stage], ms_segm_result[stage])
                    for stage in ms_bbox_result
                }
            else:
                results = ms_bbox_result

        return results

    def aug_test(self, img, img_meta, proposals=None, rescale=False):
        raise NotImplementedError