cascade_rcnn_r50_caffe_c4_1x.py 7.23 KB
Newer Older
myownskyW7's avatar
myownskyW7 committed
1
# model settings
Kai Chen's avatar
Kai Chen committed
2
norm_cfg = dict(type='BN', requires_grad=False)
myownskyW7's avatar
myownskyW7 committed
3
4
5
6
7
8
9
10
11
12
13
14
model = dict(
    type='CascadeRCNN',
    num_stages=3,
    pretrained='open-mmlab://resnet50_caffe',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=3,
        strides=(1, 2, 2),
        dilations=(1, 1, 1),
        out_indices=(2, ),
        frozen_stages=1,
Kai Chen's avatar
Kai Chen committed
15
        norm_cfg=norm_cfg,
myownskyW7's avatar
myownskyW7 committed
16
17
18
19
20
21
22
23
24
        norm_eval=True,
        style='caffe'),
    shared_head=dict(
        type='ResLayer',
        depth=50,
        stage=3,
        stride=2,
        dilation=1,
        style='caffe',
Kai Chen's avatar
Kai Chen committed
25
        norm_cfg=norm_cfg,
myownskyW7's avatar
myownskyW7 committed
26
27
28
29
30
31
32
33
34
35
        norm_eval=True),
    rpn_head=dict(
        type='RPNHead',
        in_channels=1024,
        feat_channels=1024,
        anchor_scales=[2, 4, 8, 16, 32],
        anchor_ratios=[0.5, 1.0, 2.0],
        anchor_strides=[16],
        target_means=[.0, .0, .0, .0],
        target_stds=[1.0, 1.0, 1.0, 1.0],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
36
37
38
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
myownskyW7's avatar
myownskyW7 committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    bbox_roi_extractor=dict(
        type='SingleRoIExtractor',
        roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
        out_channels=1024,
        featmap_strides=[16]),
    bbox_head=[
        dict(
            type='BBoxHead',
            with_avg_pool=True,
            roi_feat_size=7,
            in_channels=2048,
            num_classes=81,
            target_means=[0., 0., 0., 0.],
            target_stds=[0.1, 0.1, 0.2, 0.2],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
53
54
55
56
57
58
59
60
61
            reg_class_agnostic=True,
            loss_cls=dict(
                type='CrossEntropyLoss',
                use_sigmoid=False,
                loss_weight=1.0),
            loss_bbox=dict(
                type='SmoothL1Loss',
                beta=1.0,
                loss_weight=1.0)),
myownskyW7's avatar
myownskyW7 committed
62
63
64
65
66
67
68
69
        dict(
            type='BBoxHead',
            with_avg_pool=True,
            roi_feat_size=7,
            in_channels=2048,
            num_classes=81,
            target_means=[0., 0., 0., 0.],
            target_stds=[0.05, 0.05, 0.1, 0.1],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
70
71
72
73
74
75
76
77
78
            reg_class_agnostic=True,
            loss_cls=dict(
                type='CrossEntropyLoss',
                use_sigmoid=False,
                loss_weight=1.0),
            loss_bbox=dict(
                type='SmoothL1Loss',
                beta=1.0,
                loss_weight=1.0)),
myownskyW7's avatar
myownskyW7 committed
79
80
81
82
83
84
85
86
        dict(
            type='BBoxHead',
            with_avg_pool=True,
            roi_feat_size=7,
            in_channels=2048,
            num_classes=81,
            target_means=[0., 0., 0., 0.],
            target_stds=[0.033, 0.033, 0.067, 0.067],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
87
88
89
90
91
92
93
94
95
            reg_class_agnostic=True,
            loss_cls=dict(
                type='CrossEntropyLoss',
                use_sigmoid=False,
                loss_weight=1.0),
            loss_bbox=dict(
                type='SmoothL1Loss',
                beta=1.0,
                loss_weight=1.0)),
myownskyW7's avatar
myownskyW7 committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    ])
# model training and testing settings
train_cfg = dict(
    rpn=dict(
        assigner=dict(
            type='MaxIoUAssigner',
            pos_iou_thr=0.7,
            neg_iou_thr=0.3,
            min_pos_iou=0.3,
            ignore_iof_thr=-1),
        sampler=dict(
            type='RandomSampler',
            num=256,
            pos_fraction=0.5,
            neg_pos_ub=-1,
            add_gt_as_proposals=False),
        allowed_border=0,
        pos_weight=-1,
        debug=False),
115
116
117
118
119
120
121
    rpn_proposal=dict(
        nms_across_levels=False,
        nms_pre=12000,
        nms_post=2000,
        max_num=2000,
        nms_thr=0.7,
        min_bbox_size=0),
myownskyW7's avatar
myownskyW7 committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    rcnn=[
        dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.5,
                neg_iou_thr=0.5,
                min_pos_iou=0.5,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
                add_gt_as_proposals=True),
            mask_size=14,
            pos_weight=-1,
            debug=False),
        dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.6,
                neg_iou_thr=0.6,
                min_pos_iou=0.6,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
                add_gt_as_proposals=True),
            mask_size=14,
            pos_weight=-1,
            debug=False),
        dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.7,
                neg_iou_thr=0.7,
                min_pos_iou=0.7,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
                add_gt_as_proposals=True),
            mask_size=14,
            pos_weight=-1,
            debug=False)
    ],
    stage_loss_weights=[1, 0.5, 0.25])
test_cfg = dict(
    rpn=dict(
        nms_across_levels=False,
176
177
178
        nms_pre=6000,
        nms_post=1000,
        max_num=1000,
myownskyW7's avatar
myownskyW7 committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        nms_thr=0.7,
        min_bbox_size=0),
    rcnn=dict(
        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100),
    keep_all_stages=False)
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
    mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False)
data = dict(
    imgs_per_gpu=1,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
        flip_ratio=0.5,
        with_mask=True,
        with_crowd=True,
        with_label=True),
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
        flip_ratio=0,
        with_mask=True,
        with_crowd=True,
        with_label=True),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
        flip_ratio=0,
        with_mask=True,
        with_label=False,
        test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
    step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/cascade_rcnn_r50_c4_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]