detector.py 14.4 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
import torch
import torch.nn as nn

from .. import builder
from mmdet.core import (bbox2roi, bbox_mapping, split_combined_gt_polys,
pangjm's avatar
pangjm committed
6
7
                        bbox2result, multiclass_nms, merge_aug_proposals,
                        merge_aug_bboxes, merge_aug_masks, sample_proposals)
Kai Chen's avatar
Kai Chen committed
8
9


pangjm's avatar
pangjm committed
10
class Detector(nn.Module):
Kai Chen's avatar
Kai Chen committed
11
12
    def __init__(self,
                 backbone,
pangjm's avatar
pangjm committed
13
14
15
16
                 neck=None,
                 rpn_head=None,
                 roi_block=None,
                 bbox_head=None,
Kai Chen's avatar
Kai Chen committed
17
18
                 mask_block=None,
                 mask_head=None,
pangjm's avatar
pangjm committed
19
20
21
22
                 rpn_train_cfg=None,
                 rpn_test_cfg=None,
                 rcnn_train_cfg=None,
                 rcnn_test_cfg=None,
Kai Chen's avatar
Kai Chen committed
23
                 pretrained=None):
pangjm's avatar
pangjm committed
24
        super(Detector, self).__init__()
Kai Chen's avatar
Kai Chen committed
25
        self.backbone = builder.build_backbone(backbone)
pangjm's avatar
pangjm committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

        self.with_neck = True if neck is not None else False
        if self.with_neck:
            self.neck = builder.build_neck(neck)

        self.with_rpn = True if rpn_head is not None else False
        if self.with_rpn:
            self.rpn_head = builder.build_rpn_head(rpn_head)
            self.rpn_train_cfg = rpn_train_cfg
            self.rpn_test_cfg = rpn_test_cfg

        self.with_bbox = True if bbox_head is not None else False
        if self.with_bbox:
            self.bbox_roi_extractor = builder.build_roi_extractor(roi_block)
            self.bbox_head = builder.build_bbox_head(bbox_head)
            self.rcnn_train_cfg = rcnn_train_cfg
            self.rcnn_test_cfg = rcnn_test_cfg

        self.with_mask = True if mask_head is not None else False
        if self.with_mask:
            self.mask_roi_extractor = builder.build_roi_extractor(mask_block)
            self.mask_head = builder.build_mask_head(mask_head)

Kai Chen's avatar
Kai Chen committed
49
50
51
52
53
54
        self.init_weights(pretrained=pretrained)

    def init_weights(self, pretrained=None):
        if pretrained is not None:
            print('load model from: {}'.format(pretrained))
        self.backbone.init_weights(pretrained=pretrained)
pangjm's avatar
pangjm committed
55
        if self.with_neck:
Kai Chen's avatar
Kai Chen committed
56
57
58
59
60
            if isinstance(self.neck, nn.Sequential):
                for m in self.neck:
                    m.init_weights()
            else:
                self.neck.init_weights()
pangjm's avatar
pangjm committed
61
62
63
64
65
66
        if self.with_rpn:
            self.rpn_head.init_weights()
        if self.with_bbox:
            self.bbox_roi_extractor.init_weights()
            self.bbox_head.init_weights()
        if self.with_mask:
Kai Chen's avatar
Kai Chen committed
67
68
69
70
71
72
73
            self.mask_roi_extractor.init_weights()
            self.mask_head.init_weights()

    def forward(self,
                img,
                img_meta,
                gt_bboxes=None,
pangjm's avatar
pangjm committed
74
                proposals=None,
Kai Chen's avatar
Kai Chen committed
75
                gt_labels=None,
pangjm's avatar
pangjm committed
76
77
                gt_bboxes_ignore=None,
                gt_mask_polys=None,
Kai Chen's avatar
Kai Chen committed
78
79
80
                gt_poly_lens=None,
                num_polys_per_mask=None,
                return_loss=True,
pangjm's avatar
pangjm committed
81
                return_bboxes=True,
Kai Chen's avatar
Kai Chen committed
82
                rescale=False):
pangjm's avatar
pangjm committed
83
        assert proposals is not None or self.with_rpn, "Only one of proposals file and RPN can exist."
Kai Chen's avatar
Kai Chen committed
84

pangjm's avatar
pangjm committed
85
86
        if not return_loss:
            return self.test(img, img_meta, proposals, rescale)
Kai Chen's avatar
Kai Chen committed
87
        else:
pangjm's avatar
pangjm committed
88
            losses = dict()
Kai Chen's avatar
Kai Chen committed
89

pangjm's avatar
pangjm committed
90
        img_shapes = img_meta['img_shape']
Kai Chen's avatar
Kai Chen committed
91
        x = self.backbone(img)
pangjm's avatar
pangjm committed
92
93

        if self.with_neck:
Kai Chen's avatar
Kai Chen committed
94
95
            x = self.neck(x)

pangjm's avatar
pangjm committed
96
97
98
99
100
101
        if self.with_rpn:
            rpn_outs = self.rpn_head(x)
            rpn_loss_inputs = rpn_outs + (gt_bboxes, img_shapes,
                                          self.rpn_train_cfg)
            rpn_losses = self.rpn_head.loss(*rpn_loss_inputs)
            losses.update(rpn_losses)
Kai Chen's avatar
Kai Chen committed
102

pangjm's avatar
pangjm committed
103
104
105
106
107
108
        if self.with_bbox:
            if self.with_rpn:
                proposal_inputs = rpn_outs + (img_shapes, self.rpn_test_cfg)
                proposal_list = self.rpn_head.get_proposals(*proposal_inputs)
            else:
                proposal_list = proposals
Kai Chen's avatar
Kai Chen committed
109

pangjm's avatar
pangjm committed
110
111
112
113
114
            (pos_inds, neg_inds, pos_proposals, neg_proposals,
             pos_assigned_gt_inds,
             pos_gt_bboxes, pos_gt_labels) = sample_proposals(
                 proposal_list, gt_bboxes, gt_bboxes_ignore, gt_labels,
                 self.rcnn_train_cfg)
Kai Chen's avatar
Kai Chen committed
115

pangjm's avatar
pangjm committed
116
117
118
119
            labels, label_weights, bbox_targets, bbox_weights = \
                self.bbox_head.get_bbox_target(
                    pos_proposals, neg_proposals, pos_gt_bboxes, pos_gt_labels,
                    self.rcnn_train_cfg)
Kai Chen's avatar
Kai Chen committed
120

pangjm's avatar
pangjm committed
121
122
123
124
125
126
127
128
            rois = bbox2roi([
                torch.cat([pos, neg], dim=0)
                for pos, neg in zip(pos_proposals, neg_proposals)
            ])
            # TODO: a more flexible way to configurate feat maps
            roi_feats = self.bbox_roi_extractor(
                x[:self.bbox_roi_extractor.num_inputs], rois)
            cls_score, bbox_pred = self.bbox_head(roi_feats)
Kai Chen's avatar
Kai Chen committed
129

pangjm's avatar
pangjm committed
130
131
132
133
            loss_bbox = self.bbox_head.loss(cls_score, bbox_pred, labels,
                                            label_weights, bbox_targets,
                                            bbox_weights)
            losses.update(loss_bbox)
Kai Chen's avatar
Kai Chen committed
134
135

        if self.with_mask:
pangjm's avatar
pangjm committed
136
137
138
139
            gt_polys = split_combined_gt_polys(gt_mask_polys, gt_poly_lens,
                                               num_polys_per_mask)
            mask_targets = self.mask_head.get_mask_target(
                pos_proposals, pos_assigned_gt_inds, gt_polys, img_meta,
Kai Chen's avatar
Kai Chen committed
140
141
142
143
144
145
146
147
148
                self.rcnn_train_cfg)
            pos_rois = bbox2roi(pos_proposals)
            mask_feats = self.mask_roi_extractor(
                x[:self.mask_roi_extractor.num_inputs], pos_rois)
            mask_pred = self.mask_head(mask_feats)
            losses['loss_mask'] = self.mask_head.loss(mask_pred, mask_targets,
                                                      torch.cat(pos_gt_labels))
        return losses

pangjm's avatar
pangjm committed
149
    def test(self, imgs, img_metas, proposals=None, rescale=False):
Kai Chen's avatar
Kai Chen committed
150
151
152
153
154
155
        """Test w/ or w/o augmentations."""
        assert isinstance(imgs, list) and isinstance(img_metas, list)
        assert len(imgs) == len(img_metas)
        img_per_gpu = imgs[0].size(0)
        assert img_per_gpu == 1
        if len(imgs) == 1:
pangjm's avatar
pangjm committed
156
            return self.simple_test(imgs[0], img_metas[0], proposals, rescale)
Kai Chen's avatar
Kai Chen committed
157
        else:
pangjm's avatar
pangjm committed
158
            return self.aug_test(imgs, img_metas, proposals, rescale)
Kai Chen's avatar
Kai Chen committed
159

pangjm's avatar
pangjm committed
160
161
162
    def simple_test_rpn(self, x, img_meta):
        img_shapes = img_meta['img_shape']
        scale_factor = img_meta['scale_factor']
Kai Chen's avatar
Kai Chen committed
163
164
        rpn_outs = self.rpn_head(x)
        proposal_inputs = rpn_outs + (img_shapes, self.rpn_test_cfg)
pangjm's avatar
pangjm committed
165
166
        proposal_list = self.rpn_head.get_proposals(*proposal_inputs)[0]
        return proposal_list
Kai Chen's avatar
Kai Chen committed
167

pangjm's avatar
pangjm committed
168
169
170
    def simple_test_bboxes(self, x, img_meta, proposals, rescale=False):
        """Test only det bboxes without augmentation."""
        rois = bbox2roi(proposals)
Kai Chen's avatar
Kai Chen committed
171
172
173
174
        roi_feats = self.bbox_roi_extractor(
            x[:len(self.bbox_roi_extractor.featmap_strides)], rois)
        cls_score, bbox_pred = self.bbox_head(roi_feats)
        # image shape of the first image in the batch (only one)
pangjm's avatar
pangjm committed
175
176
        img_shape = img_meta['img_shape'][0]
        scale_factor = img_meta['scale_factor']
Kai Chen's avatar
Kai Chen committed
177
178
179
180
181
        det_bboxes, det_labels = self.bbox_head.get_det_bboxes(
            rois,
            cls_score,
            bbox_pred,
            img_shape,
pangjm's avatar
pangjm committed
182
            scale_factor,
Kai Chen's avatar
Kai Chen committed
183
184
185
186
187
188
189
190
191
192
193
            rescale=rescale,
            nms_cfg=self.rcnn_test_cfg)
        return det_bboxes, det_labels

    def simple_test_mask(self,
                         x,
                         img_meta,
                         det_bboxes,
                         det_labels,
                         rescale=False):
        # image shape of the first image in the batch (only one)
pangjm's avatar
pangjm committed
194
195
        img_shape = img_meta['img_shape'][0]
        scale_factor = img_meta['scale_factor']
Kai Chen's avatar
Kai Chen committed
196
197
198
199
200
        if det_bboxes.shape[0] == 0:
            segm_result = [[] for _ in range(self.mask_head.num_classes - 1)]
        else:
            # if det_bboxes is rescaled to the original image size, we need to
            # rescale it back to the testing scale to obtain RoIs.
pangjm's avatar
pangjm committed
201
            _bboxes = (det_bboxes[:, :4] * scale_factor.float()
Kai Chen's avatar
Kai Chen committed
202
203
204
205
206
207
                       if rescale else det_bboxes)
            mask_rois = bbox2roi([_bboxes])
            mask_feats = self.mask_roi_extractor(
                x[:len(self.mask_roi_extractor.featmap_strides)], mask_rois)
            mask_pred = self.mask_head(mask_feats)
            segm_result = self.mask_head.get_seg_masks(
pangjm's avatar
pangjm committed
208
209
210
211
212
                mask_pred,
                det_bboxes,
                det_labels,
                self.rcnn_test_cfg,
                ori_scale=img_meta['ori_shape'])
Kai Chen's avatar
Kai Chen committed
213
214
        return segm_result

pangjm's avatar
pangjm committed
215
    def simple_test(self, img, img_meta, proposals=None, rescale=False):
Kai Chen's avatar
Kai Chen committed
216
217
218
        """Test without augmentation."""
        # get feature maps
        x = self.backbone(img)
pangjm's avatar
pangjm committed
219
        if self.with_neck:
Kai Chen's avatar
Kai Chen committed
220
            x = self.neck(x)
pangjm's avatar
pangjm committed
221
222
223
224
225
226
227
228
229
230
        if self.with_rpn:
            proposals = self.simple_test_rpn(x, img_meta)
        if self.with_bbox:
            # BUG proposals shape?
            det_bboxes, det_labels = self.simple_test_bboxes(
                x, img_meta, [proposals], rescale=rescale)
            bbox_result = bbox2result(det_bboxes, det_labels,
                                      self.bbox_head.num_classes)
            if not self.with_mask:
                return bbox_result
Kai Chen's avatar
Kai Chen committed
231

pangjm's avatar
pangjm committed
232
233
234
235
236
237
            segm_result = self.simple_test_mask(
                x, img_meta, det_bboxes, det_labels, rescale=rescale)
            return bbox_result, segm_result
        else:
            proposals[:, :4] /= img_meta['scale_factor'].float()
            return proposals.cpu().numpy()
Kai Chen's avatar
Kai Chen committed
238

pangjm's avatar
pangjm committed
239
    # TODO aug test haven't been verified
Kai Chen's avatar
Kai Chen committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    def aug_test_bboxes(self, imgs, img_metas):
        """Test with augmentations for det bboxes."""
        # step 1: get RPN proposals for augmented images, apply NMS to the
        # union of all proposals.
        aug_proposals = []
        for img, img_meta in zip(imgs, img_metas):
            x = self.backbone(img)
            if self.neck is not None:
                x = self.neck(x)
            rpn_outs = self.rpn_head(x)
            proposal_inputs = rpn_outs + (img_meta['shape_scale'],
                                          self.rpn_test_cfg)
            proposal_list = self.rpn_head.get_proposals(*proposal_inputs)
            assert len(proposal_list) == 1
            aug_proposals.append(proposal_list[0])  # len(proposal_list) = 1
        # after merging, proposals will be rescaled to the original image size
        merged_proposals = merge_aug_proposals(aug_proposals, img_metas,
                                               self.rpn_test_cfg)
        # step 2: Given merged proposals, predict bboxes for augmented images,
        # output the union of these bboxes.
        aug_bboxes = []
        aug_scores = []
        for img, img_meta in zip(imgs, img_metas):
            # only one image in the batch
            img_shape = img_meta['shape_scale'][0]
            flip = img_meta['flip'][0]
            proposals = bbox_mapping(merged_proposals[:, :4], img_shape, flip)
            rois = bbox2roi([proposals])
            # recompute feature maps to save GPU memory
            x = self.backbone(img)
            if self.neck is not None:
                x = self.neck(x)
            roi_feats = self.bbox_roi_extractor(
                x[:len(self.bbox_roi_extractor.featmap_strides)], rois)
            cls_score, bbox_pred = self.bbox_head(roi_feats)
            bboxes, scores = self.bbox_head.get_det_bboxes(
                rois,
                cls_score,
                bbox_pred,
                img_shape,
                rescale=False,
                nms_cfg=None)
            aug_bboxes.append(bboxes)
            aug_scores.append(scores)
        # after merging, bboxes will be rescaled to the original image size
        merged_bboxes, merged_scores = merge_aug_bboxes(
            aug_bboxes, aug_scores, img_metas, self.rcnn_test_cfg)
        det_bboxes, det_labels = multiclass_nms(
            merged_bboxes, merged_scores, self.rcnn_test_cfg.score_thr,
            self.rcnn_test_cfg.nms_thr, self.rcnn_test_cfg.max_per_img)
        return det_bboxes, det_labels

    def aug_test_mask(self,
                      imgs,
                      img_metas,
                      det_bboxes,
                      det_labels,
                      rescale=False):
        # step 3: Given merged bboxes, predict masks for augmented images,
        # scores of masks are averaged across augmented images.
        if rescale:
            _det_bboxes = det_bboxes
        else:
            _det_bboxes = det_bboxes.clone()
            _det_bboxes[:, :4] *= img_metas[0]['shape_scale'][0][-1]
        if det_bboxes.shape[0] == 0:
            segm_result = [[] for _ in range(self.mask_head.num_classes - 1)]
        else:
            aug_masks = []
            for img, img_meta in zip(imgs, img_metas):
                img_shape = img_meta['shape_scale'][0]
                flip = img_meta['flip'][0]
                _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, flip)
                mask_rois = bbox2roi([_bboxes])
                x = self.backbone(img)
                if self.neck is not None:
                    x = self.neck(x)
                mask_feats = self.mask_roi_extractor(
                    x[:len(self.mask_roi_extractor.featmap_strides)],
                    mask_rois)
                mask_pred = self.mask_head(mask_feats)
                # convert to numpy array to save memory
                aug_masks.append(mask_pred.sigmoid().cpu().numpy())
            merged_masks = merge_aug_masks(aug_masks, img_metas,
                                           self.rcnn_test_cfg)
            segm_result = self.mask_head.get_seg_masks(
                merged_masks, _det_bboxes, det_labels,
                img_metas[0]['shape_scale'][0], self.rcnn_test_cfg, rescale)
        return segm_result

    def aug_test(self, imgs, img_metas, rescale=False):
        """Test with augmentations.
        If rescale is False, then returned bboxes and masks will fit the scale
        if imgs[0].
        """
        # aug test det bboxes
        det_bboxes, det_labels = self.aug_test_bboxes(imgs, img_metas)
        if rescale:
            _det_bboxes = det_bboxes
        else:
            _det_bboxes = det_bboxes.clone()
            _det_bboxes[:, :4] *= img_metas[0]['shape_scale'][0][-1]
        bbox_result = bbox2result(_det_bboxes, det_labels,
                                  self.bbox_head.num_classes)
        if not self.with_mask:
            return bbox_result
        segm_result = self.aug_test_mask(
            imgs, img_metas, det_bboxes, det_labels, rescale=rescale)
        return bbox_result, segm_result