GETTING_STARTED.md 8.81 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Getting Started

This page provides basic tutorials about the usage of mmdetection.
For installation instructions, please see [INSTALL.md](INSTALL.md).

## Inference with pretrained models

We provide testing scripts to evaluate a whole dataset (COCO, PASCAL VOC, etc.),
and also some high-level apis for easier integration to other projects.

### Test a dataset

- [x] single GPU testing
- [x] multiple GPU testing
- [x] visualize detection results

17
You can use the following commands to test a dataset.
Kai Chen's avatar
Kai Chen committed
18
19

```shell
20
21
# single-gpu testing
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] [--show]
Kai Chen's avatar
Kai Chen committed
22

23
24
25
# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
```
Kai Chen's avatar
Kai Chen committed
26
27
28
29

Optional arguments:
- `RESULT_FILE`: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.
- `EVAL_METRICS`: Items to be evaluated on the results. Allowed values are: `proposal_fast`, `proposal`, `bbox`, `segm`, `keypoints`.
Kai Chen's avatar
Kai Chen committed
30
- `--show`: If specified, detection results will be ploted on the images and shown in a new window. (Only applicable for single GPU testing.)
Kai Chen's avatar
Kai Chen committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Examples:

Assume that you have already downloaded the checkpoints to `checkpoints/`.

1. Test Faster R-CNN and show the results.

```shell
python tools/test.py configs/faster_rcnn_r50_fpn_1x.py \
    checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth \
    --show
```

2. Test Mask R-CNN and evaluate the bbox and mask AP.

```shell
python tools/test.py configs/mask_rcnn_r50_fpn_1x.py \
    checkpoints/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth \
liushuchun's avatar
liushuchun committed
49
    --out results.pkl --eval bbox segm
Kai Chen's avatar
Kai Chen committed
50
51
```

52
3. Test Mask R-CNN with 8 GPUs, and evaluate the bbox and mask AP.
Kai Chen's avatar
Kai Chen committed
53
54

```shell
55
./tools/dist_test.sh configs/mask_rcnn_r50_fpn_1x.py \
Kai Chen's avatar
Kai Chen committed
56
    checkpoints/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth \
liushuchun's avatar
liushuchun committed
57
    8 --out results.pkl --eval bbox segm
Kai Chen's avatar
Kai Chen committed
58
59
60
61
62
63
64
```

### High-level APIs for testing images.

Here is an example of building the model and test given images.

```python
65
from mmdet.apis import init_detector, inference_detector, show_result
simon wu's avatar
simon wu committed
66
import mmcv
Kai Chen's avatar
Kai Chen committed
67

68
69
config_file = 'configs/faster_rcnn_r50_fpn_1x.py'
checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth'
Kai Chen's avatar
Kai Chen committed
70

71
# build the model from a config file and a checkpoint file
72
model = init_detector(config_file, checkpoint_file, device='cuda:0')
Kai Chen's avatar
Kai Chen committed
73

74
75
76
77
# test a single image and show the results
img = 'test.jpg'  # or img = mmcv.imread(img), which will only load it once
result = inference_detector(model, img)
show_result(img, result, model.CLASSES)
Kai Chen's avatar
Kai Chen committed
78

79
# test a list of images and write the results to image files
Kai Chen's avatar
Kai Chen committed
80
imgs = ['test1.jpg', 'test2.jpg']
81
for i, result in enumerate(inference_detector(model, imgs)):
82
    show_result(imgs[i], result, model.CLASSES, out_file='result_{}.jpg'.format(i))
simon wu's avatar
simon wu committed
83
84
85
86
87
88

# test a video and show the results
video = mmcv.VideoReader('video.mp4')
for frame in video:
    result = inference_detector(model, frame)
    show_result(frame, result, model.CLASSES, wait_time=1)
Kai Chen's avatar
Kai Chen committed
89
90
91
92
93
94
95
96
97
98
99
```


## Train a model

mmdetection implements distributed training and non-distributed training,
which uses `MMDistributedDataParallel` and `MMDataParallel` respectively.

All outputs (log files and checkpoints) will be saved to the working directory,
which is specified by `work_dir` in the config file.

Kai Chen's avatar
Kai Chen committed
100
101
**\*Important\***: The default learning rate in config files is for 8 GPUs and 2 img/gpu (batch size = 8*2 = 16).
According to the [Linear Scaling Rule](https://arxiv.org/abs/1706.02677), you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., lr=0.01 for 4 GPUs * 2 img/gpu and lr=0.08 for 16 GPUs * 4 img/gpu.
Kai Chen's avatar
Kai Chen committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

### Train with a single GPU

```shell
python tools/train.py ${CONFIG_FILE}
```

If you want to specify the working directory in the command, you can add an argument `--work_dir ${YOUR_WORK_DIR}`.

### Train with multiple GPUs

```shell
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]
```

Optional arguments are:

Kai Chen's avatar
Kai Chen committed
119
- `--validate` (**strongly recommended**): Perform evaluation at every k (default value is 1, which can be modified like [this](configs/mask_rcnn_r50_fpn_1x.py#L174)) epochs during the training.
Kai Chen's avatar
Kai Chen committed
120
121
122
- `--work_dir ${WORK_DIR}`: Override the working directory specified in the config file.
- `--resume_from ${CHECKPOINT_FILE}`: Resume from a previous checkpoint file.

Kai Chen's avatar
Kai Chen committed
123
124
125
126
Difference between `resume_from` and `load_from`:
`resume_from` loads both the model weights and optimizer status, and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that is interrupted accidentally.
`load_from` only loads the model weights and the training epoch starts from 0. It is usually used for finetuning.

Kai Chen's avatar
Kai Chen committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
### Train with multiple machines

If you run mmdetection on a cluster managed with [slurm](https://slurm.schedmd.com/), you can just use the script `slurm_train.sh`.

```shell
./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} [${GPUS}]
```

Here is an example of using 16 GPUs to train Mask R-CNN on the dev partition.

```shell
./tools/slurm_train.sh dev mask_r50_1x configs/mask_rcnn_r50_fpn_1x.py /nfs/xxxx/mask_rcnn_r50_fpn_1x 16
```

You can check [slurm_train.sh](tools/slurm_train.sh) for full arguments and environment variables.

If you have just multiple machines connected with ethernet, you can refer to
pytorch [launch utility](https://pytorch.org/docs/stable/distributed_deprecated.html#launch-utility).
Usually it is slow if you do not have high speed networking like infiniband.


## How-to

### Use my own datasets

The simplest way is to convert your dataset to existing dataset formats (COCO or PASCAL VOC).

Here we show an example of adding a custom dataset of 5 classes, assuming it is also in COCO format.

In `mmdet/datasets/my_dataset.py`:

```python
from .coco import CocoDataset
160
from .registry import DATASETS
Kai Chen's avatar
Kai Chen committed
161
162


163
@DATASETS.register_module
Kai Chen's avatar
Kai Chen committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
class MyDataset(CocoDataset):

    CLASSES = ('a', 'b', 'c', 'd', 'e')
```

In `mmdet/datasets/__init__.py`:

```python
from .my_dataset import MyDataset
```

Then you can use `MyDataset` in config files, with the same API as CocoDataset.


It is also fine if you do not want to convert the annotation format to COCO or PASCAL format.
Actually, we define a simple annotation format and all existing datasets are
processed to be compatible with it, either online or offline.

The annotation of a dataset is a list of dict, each dict corresponds to an image.
There are 3 field `filename` (relative path), `width`, `height` for testing,
and an additional field `ann` for training. `ann` is also a dict containing at least 2 fields:
`bboxes` and `labels`, both of which are numpy arrays. Some datasets may provide
annotations like crowd/difficult/ignored bboxes, we use `bboxes_ignore` and `labels_ignore`
to cover them.

Here is an example.
```
[
    {
        'filename': 'a.jpg',
        'width': 1280,
        'height': 720,
        'ann': {
            'bboxes': <np.ndarray, float32> (n, 4),
198
            'labels': <np.ndarray, int64> (n, ),
Kai Chen's avatar
Kai Chen committed
199
            'bboxes_ignore': <np.ndarray, float32> (k, 4),
200
            'labels_ignore': <np.ndarray, int64> (k, ) (optional field)
Kai Chen's avatar
Kai Chen committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
        }
    },
    ...
]
```

There are two ways to work with custom datasets.

- online conversion

  You can write a new Dataset class inherited from `CustomDataset`, and overwrite two methods
  `load_annotations(self, ann_file)` and `get_ann_info(self, idx)`,
  like [CocoDataset](mmdet/datasets/coco.py) and [VOCDataset](mmdet/datasets/voc.py).

- offline conversion

  You can convert the annotation format to the expected format above and save it to
  a pickle or json file, like [pascal_voc.py](tools/convert_datasets/pascal_voc.py).
  Then you can simply use `CustomDataset`.

### Develop new components

We basically categorize model components into 4 types.

Lawrence's avatar
Lawrence committed
225
- backbone: usually an FCN network to extract feature maps, e.g., ResNet, MobileNet.
Kai Chen's avatar
Kai Chen committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
- neck: the component between backbones and heads, e.g., FPN, PAFPN.
- head: the component for specific tasks, e.g., bbox prediction and mask prediction.
- roi extractor: the part for extracting RoI features from feature maps, e.g., RoI Align.

Here we show how to develop new components with an example of MobileNet.

1. Create a new file `mmdet/models/backbones/mobilenet.py`.

```python
import torch.nn as nn

from ..registry import BACKBONES


240
@BACKBONES.register_module
Kai Chen's avatar
Kai Chen committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
class MobileNet(nn.Module):

    def __init__(self, arg1, arg2):
        pass

    def forward(x):  # should return a tuple
        pass
```

2. Import the module in `mmdet/models/backbones/__init__.py`.

```python
from .mobilenet import MobileNet
```

3. Use it in your config file.

```python
model = dict(
    ...
    backbone=dict(
        type='MobileNet',
        arg1=xxx,
        arg2=xxx),
    ...
```

For more information on how it works, you can refer to [TECHNICAL_DETAILS.md](TECHNICAL_DETAILS.md) (TODO).