test_heads.py 10.6 KB
Newer Older
bailuo's avatar
readme  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import mmcv
import torch

from mmdet.core import build_assigner, build_sampler
from mmdet.models.anchor_heads import AnchorHead
from mmdet.models.bbox_heads import BBoxHead


def test_anchor_head_loss():
    """
    Tests anchor head loss when truth is empty and non-empty
    """
    self = AnchorHead(num_classes=4, in_channels=1)
    s = 256
    img_metas = [{
        'img_shape': (s, s, 3),
        'scale_factor': 1,
        'pad_shape': (s, s, 3)
    }]

    cfg = mmcv.Config({
        'assigner': {
            'type': 'MaxIoUAssigner',
            'pos_iou_thr': 0.7,
            'neg_iou_thr': 0.3,
            'min_pos_iou': 0.3,
            'ignore_iof_thr': -1
        },
        'sampler': {
            'type': 'RandomSampler',
            'num': 256,
            'pos_fraction': 0.5,
            'neg_pos_ub': -1,
            'add_gt_as_proposals': False
        },
        'allowed_border': 0,
        'pos_weight': -1,
        'debug': False
    })

    # Anchor head expects a multiple levels of features per image
    feat = [
        torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2)))
        for i in range(len(self.anchor_generators))
    ]
    cls_scores, bbox_preds = self.forward(feat)

    # Test that empty ground truth encourages the network to predict background
    gt_bboxes = [torch.empty((0, 4))]
    gt_labels = [torch.LongTensor([])]

    gt_bboxes_ignore = None
    empty_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels,
                                img_metas, cfg, gt_bboxes_ignore)
    # When there is no truth, the cls loss should be nonzero but there should
    # be no box loss.
    empty_cls_loss = sum(empty_gt_losses['loss_cls'])
    empty_box_loss = sum(empty_gt_losses['loss_bbox'])
    assert empty_cls_loss.item() > 0, 'cls loss should be non-zero'
    assert empty_box_loss.item() == 0, (
        'there should be no box loss when there are no true boxes')

    # When truth is non-empty then both cls and box loss should be nonzero for
    # random inputs
    gt_bboxes = [
        torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]),
    ]
    gt_labels = [torch.LongTensor([2])]
    one_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels,
                              img_metas, cfg, gt_bboxes_ignore)
    onegt_cls_loss = sum(one_gt_losses['loss_cls'])
    onegt_box_loss = sum(one_gt_losses['loss_bbox'])
    assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero'
    assert onegt_box_loss.item() > 0, 'box loss should be non-zero'


def test_bbox_head_loss():
    """
    Tests bbox head loss when truth is empty and non-empty
    """
    self = BBoxHead(in_channels=8, roi_feat_size=3)

    num_imgs = 1
    feat = torch.rand(1, 1, 3, 3)

    # Dummy proposals
    proposal_list = [
        torch.Tensor([[23.6667, 23.8757, 228.6326, 153.8874]]),
    ]

    target_cfg = mmcv.Config({'pos_weight': 1})

    def _dummy_bbox_sampling(proposal_list, gt_bboxes, gt_labels):
        """
        Create sample results that can be passed to BBoxHead.get_target
        """
        assign_config = {
            'type': 'MaxIoUAssigner',
            'pos_iou_thr': 0.5,
            'neg_iou_thr': 0.5,
            'min_pos_iou': 0.5,
            'ignore_iof_thr': -1
        }
        sampler_config = {
            'type': 'RandomSampler',
            'num': 512,
            'pos_fraction': 0.25,
            'neg_pos_ub': -1,
            'add_gt_as_proposals': True
        }
        bbox_assigner = build_assigner(assign_config)
        bbox_sampler = build_sampler(sampler_config)
        gt_bboxes_ignore = [None for _ in range(num_imgs)]
        sampling_results = []
        for i in range(num_imgs):
            assign_result = bbox_assigner.assign(proposal_list[i],
                                                 gt_bboxes[i],
                                                 gt_bboxes_ignore[i],
                                                 gt_labels[i])
            sampling_result = bbox_sampler.sample(
                assign_result,
                proposal_list[i],
                gt_bboxes[i],
                gt_labels[i],
                feats=feat)
            sampling_results.append(sampling_result)
        return sampling_results

    # Test bbox loss when truth is empty
    gt_bboxes = [torch.empty((0, 4))]
    gt_labels = [torch.LongTensor([])]

    sampling_results = _dummy_bbox_sampling(proposal_list, gt_bboxes,
                                            gt_labels)

    bbox_targets = self.get_target(sampling_results, gt_bboxes, gt_labels,
                                   target_cfg)
    labels, label_weights, bbox_targets, bbox_weights = bbox_targets

    # Create dummy features "extracted" for each sampled bbox
    num_sampled = sum(len(res.bboxes) for res in sampling_results)
    dummy_feats = torch.rand(num_sampled, 8 * 3 * 3)
    cls_scores, bbox_preds = self.forward(dummy_feats)

    losses = self.loss(cls_scores, bbox_preds, labels, label_weights,
                       bbox_targets, bbox_weights)
    assert losses.get('loss_cls', 0) > 0, 'cls-loss should be non-zero'
    assert losses.get('loss_bbox', 0) == 0, 'empty gt loss should be zero'

    # Test bbox loss when truth is non-empty
    gt_bboxes = [
        torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]),
    ]
    gt_labels = [torch.LongTensor([2])]

    sampling_results = _dummy_bbox_sampling(proposal_list, gt_bboxes,
                                            gt_labels)

    bbox_targets = self.get_target(sampling_results, gt_bboxes, gt_labels,
                                   target_cfg)
    labels, label_weights, bbox_targets, bbox_weights = bbox_targets

    # Create dummy features "extracted" for each sampled bbox
    num_sampled = sum(len(res.bboxes) for res in sampling_results)
    dummy_feats = torch.rand(num_sampled, 8 * 3 * 3)
    cls_scores, bbox_preds = self.forward(dummy_feats)

    losses = self.loss(cls_scores, bbox_preds, labels, label_weights,
                       bbox_targets, bbox_weights)
    assert losses.get('loss_cls', 0) > 0, 'cls-loss should be non-zero'
    assert losses.get('loss_bbox', 0) > 0, 'box-loss should be non-zero'


def test_refine_boxes():
    """
    Mirrors the doctest in
    ``mmdet.models.bbox_heads.bbox_head.BBoxHead.refine_boxes`` but checks for
    multiple values of n_roi / n_img.
    """
    self = BBoxHead(reg_class_agnostic=True)

    test_settings = [

        # Corner case: less rois than images
        {
            'n_roi': 2,
            'n_img': 4,
            'rng': 34285940
        },

        # Corner case: no images
        {
            'n_roi': 0,
            'n_img': 0,
            'rng': 52925222
        },

        # Corner cases: few images / rois
        {
            'n_roi': 1,
            'n_img': 1,
            'rng': 1200281
        },
        {
            'n_roi': 2,
            'n_img': 1,
            'rng': 1200282
        },
        {
            'n_roi': 2,
            'n_img': 2,
            'rng': 1200283
        },
        {
            'n_roi': 1,
            'n_img': 2,
            'rng': 1200284
        },

        # Corner case: no rois few images
        {
            'n_roi': 0,
            'n_img': 1,
            'rng': 23955860
        },
        {
            'n_roi': 0,
            'n_img': 2,
            'rng': 25830516
        },

        # Corner case: no rois many images
        {
            'n_roi': 0,
            'n_img': 10,
            'rng': 671346
        },
        {
            'n_roi': 0,
            'n_img': 20,
            'rng': 699807
        },

        # Corner case: similar num rois and images
        {
            'n_roi': 20,
            'n_img': 20,
            'rng': 1200238
        },
        {
            'n_roi': 10,
            'n_img': 20,
            'rng': 1200238
        },
        {
            'n_roi': 5,
            'n_img': 5,
            'rng': 1200238
        },

        # ----------------------------------
        # Common case: more rois than images
        {
            'n_roi': 100,
            'n_img': 1,
            'rng': 337156
        },
        {
            'n_roi': 150,
            'n_img': 2,
            'rng': 275898
        },
        {
            'n_roi': 500,
            'n_img': 5,
            'rng': 4903221
        },
    ]

    for demokw in test_settings:
        try:
            n_roi = demokw['n_roi']
            n_img = demokw['n_img']
            rng = demokw['rng']

            print('Test refine_boxes case: {!r}'.format(demokw))
            tup = _demodata_refine_boxes(n_roi, n_img, rng=rng)
            rois, labels, bbox_preds, pos_is_gts, img_metas = tup
            bboxes_list = self.refine_bboxes(rois, labels, bbox_preds,
                                             pos_is_gts, img_metas)
            assert len(bboxes_list) == n_img
            assert sum(map(len, bboxes_list)) <= n_roi
            assert all(b.shape[1] == 4 for b in bboxes_list)
        except Exception:
            print('Test failed with demokw={!r}'.format(demokw))
            raise


def _demodata_refine_boxes(n_roi, n_img, rng=0):
    """
    Create random test data for the
    ``mmdet.models.bbox_heads.bbox_head.BBoxHead.refine_boxes`` method
    """
    import numpy as np
    from mmdet.core.bbox.demodata import random_boxes
    from mmdet.core.bbox.demodata import ensure_rng
    try:
        import kwarray
    except ImportError:
        import pytest
        pytest.skip('kwarray is required for this test')
    scale = 512
    rng = ensure_rng(rng)
    img_metas = [{'img_shape': (scale, scale)} for _ in range(n_img)]
    # Create rois in the expected format
    roi_boxes = random_boxes(n_roi, scale=scale, rng=rng)
    if n_img == 0:
        assert n_roi == 0, 'cannot have any rois if there are no images'
        img_ids = torch.empty((0, ), dtype=torch.long)
        roi_boxes = torch.empty((0, 4), dtype=torch.float32)
    else:
        img_ids = rng.randint(0, n_img, (n_roi, ))
        img_ids = torch.from_numpy(img_ids)
    rois = torch.cat([img_ids[:, None].float(), roi_boxes], dim=1)
    # Create other args
    labels = rng.randint(0, 2, (n_roi, ))
    labels = torch.from_numpy(labels).long()
    bbox_preds = random_boxes(n_roi, scale=scale, rng=rng)
    # For each image, pretend random positive boxes are gts
    is_label_pos = (labels.numpy() > 0).astype(np.int)
    lbl_per_img = kwarray.group_items(is_label_pos, img_ids.numpy())
    pos_per_img = [sum(lbl_per_img.get(gid, [])) for gid in range(n_img)]
    # randomly generate with numpy then sort with torch
    _pos_is_gts = [
        rng.randint(0, 2, (npos, )).astype(np.uint8) for npos in pos_per_img
    ]
    pos_is_gts = [
        torch.from_numpy(p).sort(descending=True)[0] for p in _pos_is_gts
    ]
    return rois, labels, bbox_preds, pos_is_gts, img_metas