deform_pool.py 9.97 KB
Newer Older
bailuo's avatar
readme  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch
import torch.nn as nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair

from . import deform_pool_cuda


class DeformRoIPoolingFunction(Function):

    @staticmethod
    def forward(ctx,
                data,
                rois,
                offset,
                spatial_scale,
                out_size,
                out_channels,
                no_trans,
                group_size=1,
                part_size=None,
                sample_per_part=4,
                trans_std=.0):
        # TODO: support unsquare RoIs
        out_h, out_w = _pair(out_size)
        assert isinstance(out_h, int) and isinstance(out_w, int)
        assert out_h == out_w
        out_size = out_h  # out_h and out_w must be equal

        ctx.spatial_scale = spatial_scale
        ctx.out_size = out_size
        ctx.out_channels = out_channels
        ctx.no_trans = no_trans
        ctx.group_size = group_size
        ctx.part_size = out_size if part_size is None else part_size
        ctx.sample_per_part = sample_per_part
        ctx.trans_std = trans_std

        assert 0.0 <= ctx.trans_std <= 1.0
        if not data.is_cuda:
            raise NotImplementedError

        n = rois.shape[0]
        output = data.new_empty(n, out_channels, out_size, out_size)
        output_count = data.new_empty(n, out_channels, out_size, out_size)
        deform_pool_cuda.deform_psroi_pooling_cuda_forward(
            data, rois, offset, output, output_count, ctx.no_trans,
            ctx.spatial_scale, ctx.out_channels, ctx.group_size, ctx.out_size,
            ctx.part_size, ctx.sample_per_part, ctx.trans_std)

        if data.requires_grad or rois.requires_grad or offset.requires_grad:
            ctx.save_for_backward(data, rois, offset)
        ctx.output_count = output_count

        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output):
        if not grad_output.is_cuda:
            raise NotImplementedError

        data, rois, offset = ctx.saved_tensors
        output_count = ctx.output_count
        grad_input = torch.zeros_like(data)
        grad_rois = None
        grad_offset = torch.zeros_like(offset)

        deform_pool_cuda.deform_psroi_pooling_cuda_backward(
            grad_output, data, rois, offset, output_count, grad_input,
            grad_offset, ctx.no_trans, ctx.spatial_scale, ctx.out_channels,
            ctx.group_size, ctx.out_size, ctx.part_size, ctx.sample_per_part,
            ctx.trans_std)
        return (grad_input, grad_rois, grad_offset, None, None, None, None,
                None, None, None, None)


deform_roi_pooling = DeformRoIPoolingFunction.apply


class DeformRoIPooling(nn.Module):

    def __init__(self,
                 spatial_scale,
                 out_size,
                 out_channels,
                 no_trans,
                 group_size=1,
                 part_size=None,
                 sample_per_part=4,
                 trans_std=.0):
        super(DeformRoIPooling, self).__init__()
        self.spatial_scale = spatial_scale
        self.out_size = _pair(out_size)
        self.out_channels = out_channels
        self.no_trans = no_trans
        self.group_size = group_size
        self.part_size = out_size if part_size is None else part_size
        self.sample_per_part = sample_per_part
        self.trans_std = trans_std

    def forward(self, data, rois, offset):
        if self.no_trans:
            offset = data.new_empty(0)
        return deform_roi_pooling(data, rois, offset, self.spatial_scale,
                                  self.out_size, self.out_channels,
                                  self.no_trans, self.group_size,
                                  self.part_size, self.sample_per_part,
                                  self.trans_std)


class DeformRoIPoolingPack(DeformRoIPooling):

    def __init__(self,
                 spatial_scale,
                 out_size,
                 out_channels,
                 no_trans,
                 group_size=1,
                 part_size=None,
                 sample_per_part=4,
                 trans_std=.0,
                 num_offset_fcs=3,
                 deform_fc_channels=1024):
        super(DeformRoIPoolingPack,
              self).__init__(spatial_scale, out_size, out_channels, no_trans,
                             group_size, part_size, sample_per_part, trans_std)

        self.num_offset_fcs = num_offset_fcs
        self.deform_fc_channels = deform_fc_channels

        if not no_trans:
            seq = []
            ic = self.out_size[0] * self.out_size[1] * self.out_channels
            for i in range(self.num_offset_fcs):
                if i < self.num_offset_fcs - 1:
                    oc = self.deform_fc_channels
                else:
                    oc = self.out_size[0] * self.out_size[1] * 2
                seq.append(nn.Linear(ic, oc))
                ic = oc
                if i < self.num_offset_fcs - 1:
                    seq.append(nn.ReLU(inplace=True))
            self.offset_fc = nn.Sequential(*seq)
            self.offset_fc[-1].weight.data.zero_()
            self.offset_fc[-1].bias.data.zero_()

    def forward(self, data, rois):
        assert data.size(1) == self.out_channels
        if self.no_trans:
            offset = data.new_empty(0)
            return deform_roi_pooling(data, rois, offset, self.spatial_scale,
                                      self.out_size, self.out_channels,
                                      self.no_trans, self.group_size,
                                      self.part_size, self.sample_per_part,
                                      self.trans_std)
        else:
            n = rois.shape[0]
            offset = data.new_empty(0)
            x = deform_roi_pooling(data, rois, offset, self.spatial_scale,
                                   self.out_size, self.out_channels, True,
                                   self.group_size, self.part_size,
                                   self.sample_per_part, self.trans_std)
            offset = self.offset_fc(x.view(n, -1))
            offset = offset.view(n, 2, self.out_size[0], self.out_size[1])
            return deform_roi_pooling(data, rois, offset, self.spatial_scale,
                                      self.out_size, self.out_channels,
                                      self.no_trans, self.group_size,
                                      self.part_size, self.sample_per_part,
                                      self.trans_std)


class ModulatedDeformRoIPoolingPack(DeformRoIPooling):

    def __init__(self,
                 spatial_scale,
                 out_size,
                 out_channels,
                 no_trans,
                 group_size=1,
                 part_size=None,
                 sample_per_part=4,
                 trans_std=.0,
                 num_offset_fcs=3,
                 num_mask_fcs=2,
                 deform_fc_channels=1024):
        super(ModulatedDeformRoIPoolingPack,
              self).__init__(spatial_scale, out_size, out_channels, no_trans,
                             group_size, part_size, sample_per_part, trans_std)

        self.num_offset_fcs = num_offset_fcs
        self.num_mask_fcs = num_mask_fcs
        self.deform_fc_channels = deform_fc_channels

        if not no_trans:
            offset_fc_seq = []
            ic = self.out_size[0] * self.out_size[1] * self.out_channels
            for i in range(self.num_offset_fcs):
                if i < self.num_offset_fcs - 1:
                    oc = self.deform_fc_channels
                else:
                    oc = self.out_size[0] * self.out_size[1] * 2
                offset_fc_seq.append(nn.Linear(ic, oc))
                ic = oc
                if i < self.num_offset_fcs - 1:
                    offset_fc_seq.append(nn.ReLU(inplace=True))
            self.offset_fc = nn.Sequential(*offset_fc_seq)
            self.offset_fc[-1].weight.data.zero_()
            self.offset_fc[-1].bias.data.zero_()

            mask_fc_seq = []
            ic = self.out_size[0] * self.out_size[1] * self.out_channels
            for i in range(self.num_mask_fcs):
                if i < self.num_mask_fcs - 1:
                    oc = self.deform_fc_channels
                else:
                    oc = self.out_size[0] * self.out_size[1]
                mask_fc_seq.append(nn.Linear(ic, oc))
                ic = oc
                if i < self.num_mask_fcs - 1:
                    mask_fc_seq.append(nn.ReLU(inplace=True))
                else:
                    mask_fc_seq.append(nn.Sigmoid())
            self.mask_fc = nn.Sequential(*mask_fc_seq)
            self.mask_fc[-2].weight.data.zero_()
            self.mask_fc[-2].bias.data.zero_()

    def forward(self, data, rois):
        assert data.size(1) == self.out_channels
        if self.no_trans:
            offset = data.new_empty(0)
            return deform_roi_pooling(data, rois, offset, self.spatial_scale,
                                      self.out_size, self.out_channels,
                                      self.no_trans, self.group_size,
                                      self.part_size, self.sample_per_part,
                                      self.trans_std)
        else:
            n = rois.shape[0]
            offset = data.new_empty(0)
            x = deform_roi_pooling(data, rois, offset, self.spatial_scale,
                                   self.out_size, self.out_channels, True,
                                   self.group_size, self.part_size,
                                   self.sample_per_part, self.trans_std)
            offset = self.offset_fc(x.view(n, -1))
            offset = offset.view(n, 2, self.out_size[0], self.out_size[1])
            mask = self.mask_fc(x.view(n, -1))
            mask = mask.view(n, 1, self.out_size[0], self.out_size[1])
            return deform_roi_pooling(
                data, rois, offset, self.spatial_scale, self.out_size,
                self.out_channels, self.no_trans, self.group_size,
                self.part_size, self.sample_per_part, self.trans_std) * mask