solov2_head.py 19.2 KB
Newer Older
bailuo's avatar
readme  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import mmcv
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import normal_init
from mmdet.ops import DeformConv, roi_align
from mmdet.core import multi_apply, matrix_nms
from ..builder import build_loss
from ..registry import HEADS
from ..utils import bias_init_with_prob, ConvModule

INF = 1e8

def center_of_mass(bitmasks):
    _, h, w = bitmasks.size()
    ys = torch.arange(0, h, dtype=torch.float32, device=bitmasks.device)
    xs = torch.arange(0, w, dtype=torch.float32, device=bitmasks.device)

    m00 = bitmasks.sum(dim=-1).sum(dim=-1).clamp(min=1e-6)
    m10 = (bitmasks * xs).sum(dim=-1).sum(dim=-1)
    m01 = (bitmasks * ys[:, None]).sum(dim=-1).sum(dim=-1)
    center_x = m10 / m00
    center_y = m01 / m00
    return center_x, center_y

def points_nms(heat, kernel=2):
    # kernel must be 2
    hmax = nn.functional.max_pool2d(
        heat, (kernel, kernel), stride=1, padding=1)
    keep = (hmax[:, :, :-1, :-1] == heat).float()
    return heat * keep

def dice_loss(input, target):
    input = input.contiguous().view(input.size()[0], -1)
    target = target.contiguous().view(target.size()[0], -1).float()

    a = torch.sum(input * target, 1)
    b = torch.sum(input * input, 1) + 0.001
    c = torch.sum(target * target, 1) + 0.001
    d = (2 * a) / (b + c)
    return 1-d

@HEADS.register_module
class SOLOv2Head(nn.Module):

    def __init__(self,
                 num_classes,
                 in_channels,
                 seg_feat_channels=256,
                 stacked_convs=4,
                 strides=(4, 8, 16, 32, 64),
                 base_edge_list=(16, 32, 64, 128, 256),
                 scale_ranges=((8, 32), (16, 64), (32, 128), (64, 256), (128, 512)),
                 sigma=0.2,
                 num_grids=None,
                 ins_out_channels=64,
                 loss_ins=None,
                 loss_cate=None,
                 conv_cfg=None,
                 norm_cfg=None,
                 use_dcn_in_tower=False,
                 type_dcn=None):
        super(SOLOv2Head, self).__init__()
        self.num_classes = num_classes
        self.seg_num_grids = num_grids
        self.cate_out_channels = self.num_classes - 1
        self.ins_out_channels = ins_out_channels
        self.in_channels = in_channels
        self.seg_feat_channels = seg_feat_channels
        self.stacked_convs = stacked_convs
        self.strides = strides
        self.sigma = sigma
        self.stacked_convs = stacked_convs
        self.kernel_out_channels = self.ins_out_channels * 1 * 1
        self.base_edge_list = base_edge_list
        self.scale_ranges = scale_ranges
        self.loss_cate = build_loss(loss_cate)
        self.ins_loss_weight = loss_ins['loss_weight']
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.use_dcn_in_tower = use_dcn_in_tower
        self.type_dcn = type_dcn
        self._init_layers()

    def _init_layers(self):
        norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
        self.cate_convs = nn.ModuleList()
        self.kernel_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            if self.use_dcn_in_tower:
                cfg_conv = dict(type=self.type_dcn)
            else:
                cfg_conv = self.conv_cfg

            chn = self.in_channels + 2 if i == 0 else self.seg_feat_channels
            self.kernel_convs.append(
                ConvModule(
                    chn,
                    self.seg_feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=cfg_conv,
                    norm_cfg=norm_cfg,
                    bias=norm_cfg is None))

            chn = self.in_channels if i == 0 else self.seg_feat_channels
            self.cate_convs.append(
                ConvModule(
                    chn,
                    self.seg_feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=cfg_conv,
                    norm_cfg=norm_cfg,
                    bias=norm_cfg is None))

        self.solo_cate = nn.Conv2d(
            self.seg_feat_channels, self.cate_out_channels, 3, padding=1)

        self.solo_kernel = nn.Conv2d(
            self.seg_feat_channels, self.kernel_out_channels, 3, padding=1)

    def init_weights(self):
        for m in self.cate_convs:
            normal_init(m.conv, std=0.01)
        for m in self.kernel_convs:
            normal_init(m.conv, std=0.01)
        bias_cate = bias_init_with_prob(0.01)
        normal_init(self.solo_cate, std=0.01, bias=bias_cate)
        normal_init(self.solo_kernel, std=0.01)

    def forward(self, feats, eval=False):
        new_feats = self.split_feats(feats)
        featmap_sizes = [featmap.size()[-2:] for featmap in new_feats]
        upsampled_size = (featmap_sizes[0][0] * 2, featmap_sizes[0][1] * 2)
        cate_pred, kernel_pred = multi_apply(self.forward_single, new_feats,
                                                       list(range(len(self.seg_num_grids))),
                                                       eval=eval, upsampled_size=upsampled_size)
        return cate_pred, kernel_pred

    def split_feats(self, feats):
        return (F.interpolate(feats[0], scale_factor=0.5, mode='bilinear'),
                feats[1],
                feats[2],
                feats[3],
                F.interpolate(feats[4], size=feats[3].shape[-2:], mode='bilinear'))

    def forward_single(self, x, idx, eval=False, upsampled_size=None):
        ins_kernel_feat = x
        # ins branch
        # concat coord
        x_range = torch.linspace(-1, 1, ins_kernel_feat.shape[-1], device=ins_kernel_feat.device)
        y_range = torch.linspace(-1, 1, ins_kernel_feat.shape[-2], device=ins_kernel_feat.device)
        y, x = torch.meshgrid(y_range, x_range)
        y = y.expand([ins_kernel_feat.shape[0], 1, -1, -1])
        x = x.expand([ins_kernel_feat.shape[0], 1, -1, -1])
        coord_feat = torch.cat([x, y], 1)
        ins_kernel_feat = torch.cat([ins_kernel_feat, coord_feat], 1)
        
        # kernel branch
        kernel_feat = ins_kernel_feat
        seg_num_grid = self.seg_num_grids[idx]
        kernel_feat = F.interpolate(kernel_feat, size=seg_num_grid, mode='bilinear')

        cate_feat = kernel_feat[:, :-2, :, :]

        kernel_feat = kernel_feat.contiguous()
        for i, kernel_layer in enumerate(self.kernel_convs):
            kernel_feat = kernel_layer(kernel_feat)
        kernel_pred = self.solo_kernel(kernel_feat)

        # cate branch
        cate_feat = cate_feat.contiguous()
        for i, cate_layer in enumerate(self.cate_convs):
            cate_feat = cate_layer(cate_feat)
        cate_pred = self.solo_cate(cate_feat)

        if eval:
            cate_pred = points_nms(cate_pred.sigmoid(), kernel=2).permute(0, 2, 3, 1)
        return cate_pred, kernel_pred

    def loss(self,
             cate_preds,
             kernel_preds,
             ins_pred,
             gt_bbox_list,
             gt_label_list,
             gt_mask_list,
             img_metas,
             cfg,
             gt_bboxes_ignore=None):
        mask_feat_size = ins_pred.size()[-2:]
        ins_label_list, cate_label_list, ins_ind_label_list, grid_order_list = multi_apply(
            self.solov2_target_single,
            gt_bbox_list,
            gt_label_list,
            gt_mask_list, 
            mask_feat_size=mask_feat_size)

        # ins
        ins_labels = [torch.cat([ins_labels_level_img
                                 for ins_labels_level_img in ins_labels_level], 0)
                      for ins_labels_level in zip(*ins_label_list)]

        kernel_preds = [[kernel_preds_level_img.view(kernel_preds_level_img.shape[0], -1)[:, grid_orders_level_img]
                         for kernel_preds_level_img, grid_orders_level_img in
                         zip(kernel_preds_level, grid_orders_level)]
                        for kernel_preds_level, grid_orders_level in zip(kernel_preds, zip(*grid_order_list))]
        # generate masks
        ins_pred = ins_pred
        ins_pred_list = []
        for b_kernel_pred in kernel_preds:
            b_mask_pred = []
            for idx, kernel_pred in enumerate(b_kernel_pred):

                if kernel_pred.size()[-1] == 0:
                    continue
                cur_ins_pred = ins_pred[idx, ...]
                H, W = cur_ins_pred.shape[-2:]
                N, I = kernel_pred.shape
                cur_ins_pred = cur_ins_pred.unsqueeze(0)
                kernel_pred = kernel_pred.permute(1, 0).view(I, -1, 1, 1)
                cur_ins_pred = F.conv2d(cur_ins_pred, kernel_pred, stride=1).view(-1, H, W)
                b_mask_pred.append(cur_ins_pred)
            if len(b_mask_pred) == 0:
                b_mask_pred = None
            else:
                b_mask_pred = torch.cat(b_mask_pred, 0)
            ins_pred_list.append(b_mask_pred)

        ins_ind_labels = [
            torch.cat([ins_ind_labels_level_img.flatten()
                       for ins_ind_labels_level_img in ins_ind_labels_level])
            for ins_ind_labels_level in zip(*ins_ind_label_list)
        ]
        flatten_ins_ind_labels = torch.cat(ins_ind_labels)

        num_ins = flatten_ins_ind_labels.sum()

        # dice loss
        loss_ins = []
        for input, target in zip(ins_pred_list, ins_labels):
            if input is None:
                continue
            input = torch.sigmoid(input)
            loss_ins.append(dice_loss(input, target))
        loss_ins = torch.cat(loss_ins).mean()
        loss_ins = loss_ins * self.ins_loss_weight

        # cate
        cate_labels = [
            torch.cat([cate_labels_level_img.flatten()
                       for cate_labels_level_img in cate_labels_level])
            for cate_labels_level in zip(*cate_label_list)
        ]
        flatten_cate_labels = torch.cat(cate_labels)

        cate_preds = [
            cate_pred.permute(0, 2, 3, 1).reshape(-1, self.cate_out_channels)
            for cate_pred in cate_preds
        ]
        flatten_cate_preds = torch.cat(cate_preds)

        loss_cate = self.loss_cate(flatten_cate_preds, flatten_cate_labels, avg_factor=num_ins + 1)
        return dict(
            loss_ins=loss_ins,
            loss_cate=loss_cate)

    def solov2_target_single(self,
                               gt_bboxes_raw,
                               gt_labels_raw,
                               gt_masks_raw,
                               mask_feat_size):

        device = gt_labels_raw[0].device

        # ins
        gt_areas = torch.sqrt((gt_bboxes_raw[:, 2] - gt_bboxes_raw[:, 0]) * (
                gt_bboxes_raw[:, 3] - gt_bboxes_raw[:, 1]))

        ins_label_list = []
        cate_label_list = []
        ins_ind_label_list = []
        grid_order_list = []
        for (lower_bound, upper_bound), stride, num_grid \
                in zip(self.scale_ranges, self.strides, self.seg_num_grids):

            hit_indices = ((gt_areas >= lower_bound) & (gt_areas <= upper_bound)).nonzero().flatten()
            num_ins = len(hit_indices)

            ins_label = []
            grid_order = []
            cate_label = torch.zeros([num_grid, num_grid], dtype=torch.int64, device=device)
            ins_ind_label = torch.zeros([num_grid ** 2], dtype=torch.bool, device=device)

            if num_ins == 0:
                ins_label = torch.zeros([0, mask_feat_size[0], mask_feat_size[1]], dtype=torch.uint8, device=device)
                ins_label_list.append(ins_label)
                cate_label_list.append(cate_label)
                ins_ind_label_list.append(ins_ind_label)
                grid_order_list.append([])
                continue
            gt_bboxes = gt_bboxes_raw[hit_indices]
            gt_labels = gt_labels_raw[hit_indices]
            gt_masks = gt_masks_raw[hit_indices.cpu().numpy(), ...]

            half_ws = 0.5 * (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * self.sigma
            half_hs = 0.5 * (gt_bboxes[:, 3] - gt_bboxes[:, 1]) * self.sigma

            # mass center
            gt_masks_pt = torch.from_numpy(gt_masks).to(device=device)
            center_ws, center_hs = center_of_mass(gt_masks_pt)
            valid_mask_flags = gt_masks_pt.sum(dim=-1).sum(dim=-1) > 0

            output_stride = 4
            for seg_mask, gt_label, half_h, half_w, center_h, center_w, valid_mask_flag in zip(gt_masks, gt_labels, half_hs, half_ws, center_hs, center_ws, valid_mask_flags):
                if not valid_mask_flag:
                    continue
                upsampled_size = (mask_feat_size[0] * 4, mask_feat_size[1] * 4)
                coord_w = int((center_w / upsampled_size[1]) // (1. / num_grid))
                coord_h = int((center_h / upsampled_size[0]) // (1. / num_grid))

                # left, top, right, down
                top_box = max(0, int(((center_h - half_h) / upsampled_size[0]) // (1. / num_grid)))
                down_box = min(num_grid - 1, int(((center_h + half_h) / upsampled_size[0]) // (1. / num_grid)))
                left_box = max(0, int(((center_w - half_w) / upsampled_size[1]) // (1. / num_grid)))
                right_box = min(num_grid - 1, int(((center_w + half_w) / upsampled_size[1]) // (1. / num_grid)))

                top = max(top_box, coord_h-1)
                down = min(down_box, coord_h+1)
                left = max(coord_w-1, left_box)
                right = min(right_box, coord_w+1)

                cate_label[top:(down+1), left:(right+1)] = gt_label
                seg_mask = mmcv.imrescale(seg_mask, scale=1. / output_stride)
                seg_mask = torch.from_numpy(seg_mask).to(device=device)
                for i in range(top, down+1):
                    for j in range(left, right+1):
                        label = int(i * num_grid + j)

                        cur_ins_label = torch.zeros([mask_feat_size[0], mask_feat_size[1]], dtype=torch.uint8,
                                                    device=device)
                        cur_ins_label[:seg_mask.shape[0], :seg_mask.shape[1]] = seg_mask
                        ins_label.append(cur_ins_label)
                        ins_ind_label[label] = True
                        grid_order.append(label)
            if len(ins_label) == 0:
                ins_label = torch.zeros([0, mask_feat_size[0], mask_feat_size[1]], dtype=torch.uint8, device=device)
            else:
                ins_label = torch.stack(ins_label, 0)
            ins_label_list.append(ins_label)
            cate_label_list.append(cate_label)
            ins_ind_label_list.append(ins_ind_label)
            grid_order_list.append(grid_order)
        return ins_label_list, cate_label_list, ins_ind_label_list, grid_order_list

    def get_seg(self, cate_preds, kernel_preds, seg_pred, img_metas, cfg, rescale=None):
        num_levels = len(cate_preds)
        featmap_size = seg_pred.size()[-2:]

        result_list = []
        for img_id in range(len(img_metas)):
            cate_pred_list = [
                cate_preds[i][img_id].view(-1, self.cate_out_channels).detach() for i in range(num_levels)
            ]
            seg_pred_list = seg_pred[img_id, ...].unsqueeze(0)
            kernel_pred_list = [
                kernel_preds[i][img_id].permute(1, 2, 0).view(-1, self.kernel_out_channels).detach()
                                for i in range(num_levels)
            ]
            img_shape = img_metas[img_id]['img_shape']
            scale_factor = img_metas[img_id]['scale_factor']
            ori_shape = img_metas[img_id]['ori_shape']

            cate_pred_list = torch.cat(cate_pred_list, dim=0)
            kernel_pred_list = torch.cat(kernel_pred_list, dim=0)

            result = self.get_seg_single(cate_pred_list, seg_pred_list, kernel_pred_list,
                                         featmap_size, img_shape, ori_shape, scale_factor, cfg, rescale)
            result_list.append(result)
        return result_list

    def get_seg_single(self,
                       cate_preds,
                       seg_preds,
                       kernel_preds,
                       featmap_size,
                       img_shape,
                       ori_shape,
                       scale_factor,
                       cfg,
                       rescale=False, debug=False):

        assert len(cate_preds) == len(kernel_preds)

        # overall info.
        h, w, _ = img_shape
        upsampled_size_out = (featmap_size[0] * 4, featmap_size[1] * 4)

        # process.
        inds = (cate_preds > cfg.score_thr)
        cate_scores = cate_preds[inds]
        if len(cate_scores) == 0:
            return None

        # cate_labels & kernel_preds
        inds = inds.nonzero()
        cate_labels = inds[:, 1]
        kernel_preds = kernel_preds[inds[:, 0]]

        # trans vector.
        size_trans = cate_labels.new_tensor(self.seg_num_grids).pow(2).cumsum(0)
        strides = kernel_preds.new_ones(size_trans[-1])

        n_stage = len(self.seg_num_grids)
        strides[:size_trans[0]] *= self.strides[0]
        for ind_ in range(1, n_stage):
            strides[size_trans[ind_-1]:size_trans[ind_]] *= self.strides[ind_]
        strides = strides[inds[:, 0]]

        # mask encoding.
        I, N = kernel_preds.shape
        kernel_preds = kernel_preds.view(I, N, 1, 1)
        seg_preds = F.conv2d(seg_preds, kernel_preds, stride=1).squeeze(0).sigmoid()
        # mask.
        seg_masks = seg_preds > cfg.mask_thr
        sum_masks = seg_masks.sum((1, 2)).float()

        # filter.
        keep = sum_masks > strides
        if keep.sum() == 0:
            return None

        seg_masks = seg_masks[keep, ...]
        seg_preds = seg_preds[keep, ...]
        sum_masks = sum_masks[keep]
        cate_scores = cate_scores[keep]
        cate_labels = cate_labels[keep]

        # maskness.
        seg_scores = (seg_preds * seg_masks.float()).sum((1, 2)) / sum_masks
        cate_scores *= seg_scores

        # sort and keep top nms_pre
        sort_inds = torch.argsort(cate_scores, descending=True)
        if len(sort_inds) > cfg.nms_pre:
            sort_inds = sort_inds[:cfg.nms_pre]
        seg_masks = seg_masks[sort_inds, :, :]
        seg_preds = seg_preds[sort_inds, :, :]
        sum_masks = sum_masks[sort_inds]
        cate_scores = cate_scores[sort_inds]
        cate_labels = cate_labels[sort_inds]

        # Matrix NMS
        cate_scores = matrix_nms(seg_masks, cate_labels, cate_scores,
                                    kernel=cfg.kernel,sigma=cfg.sigma, sum_masks=sum_masks)

        # filter.
        keep = cate_scores >= cfg.update_thr
        if keep.sum() == 0:
            return None
        seg_preds = seg_preds[keep, :, :]
        cate_scores = cate_scores[keep]
        cate_labels = cate_labels[keep]

        # sort and keep top_k
        sort_inds = torch.argsort(cate_scores, descending=True)
        if len(sort_inds) > cfg.max_per_img:
            sort_inds = sort_inds[:cfg.max_per_img]
        seg_preds = seg_preds[sort_inds, :, :]
        cate_scores = cate_scores[sort_inds]
        cate_labels = cate_labels[sort_inds]

        seg_preds = F.interpolate(seg_preds.unsqueeze(0),
                                    size=upsampled_size_out,
                                    mode='bilinear')[:, :, :h, :w]
        seg_masks = F.interpolate(seg_preds,
                               size=ori_shape[:2],
                               mode='bilinear').squeeze(0)
        seg_masks = seg_masks > cfg.mask_thr
        return seg_masks, cate_labels, cate_scores