geometry.py 3 KB
Newer Older
bailuo's avatar
readme  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch


def bbox_overlaps(bboxes1, bboxes2, mode='iou', is_aligned=False):
    """Calculate overlap between two set of bboxes.

    If ``is_aligned`` is ``False``, then calculate the ious between each bbox
    of bboxes1 and bboxes2, otherwise the ious between each aligned pair of
    bboxes1 and bboxes2.

    Args:
        bboxes1 (Tensor): shape (m, 4) in <x1, y1, x2, y2> format.
        bboxes2 (Tensor): shape (n, 4) in <x1, y1, x2, y2> format.
            If is_aligned is ``True``, then m and n must be equal.
        mode (str): "iou" (intersection over union) or iof (intersection over
            foreground).

    Returns:
        ious(Tensor): shape (m, n) if is_aligned == False else shape (m, 1)

    Example:
        >>> bboxes1 = torch.FloatTensor([
        >>>     [0, 0, 10, 10],
        >>>     [10, 10, 20, 20],
        >>>     [32, 32, 38, 42],
        >>> ])
        >>> bboxes2 = torch.FloatTensor([
        >>>     [0, 0, 10, 20],
        >>>     [0, 10, 10, 19],
        >>>     [10, 10, 20, 20],
        >>> ])
        >>> bbox_overlaps(bboxes1, bboxes2)
        tensor([[0.5238, 0.0500, 0.0041],
                [0.0323, 0.0452, 1.0000],
                [0.0000, 0.0000, 0.0000]])

    Example:
        >>> empty = torch.FloatTensor([])
        >>> nonempty = torch.FloatTensor([
        >>>     [0, 0, 10, 9],
        >>> ])
        >>> assert tuple(bbox_overlaps(empty, nonempty).shape) == (0, 1)
        >>> assert tuple(bbox_overlaps(nonempty, empty).shape) == (1, 0)
        >>> assert tuple(bbox_overlaps(empty, empty).shape) == (0, 0)
    """

    assert mode in ['iou', 'iof']

    rows = bboxes1.size(0)
    cols = bboxes2.size(0)
    if is_aligned:
        assert rows == cols

    if rows * cols == 0:
        return bboxes1.new(rows, 1) if is_aligned else bboxes1.new(rows, cols)

    if is_aligned:
        lt = torch.max(bboxes1[:, :2], bboxes2[:, :2])  # [rows, 2]
        rb = torch.min(bboxes1[:, 2:], bboxes2[:, 2:])  # [rows, 2]

        wh = (rb - lt + 1).clamp(min=0)  # [rows, 2]
        overlap = wh[:, 0] * wh[:, 1]
        area1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * (
            bboxes1[:, 3] - bboxes1[:, 1] + 1)

        if mode == 'iou':
            area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * (
                bboxes2[:, 3] - bboxes2[:, 1] + 1)
            ious = overlap / (area1 + area2 - overlap)
        else:
            ious = overlap / area1
    else:
        lt = torch.max(bboxes1[:, None, :2], bboxes2[:, :2])  # [rows, cols, 2]
        rb = torch.min(bboxes1[:, None, 2:], bboxes2[:, 2:])  # [rows, cols, 2]

        wh = (rb - lt + 1).clamp(min=0)  # [rows, cols, 2]
        overlap = wh[:, :, 0] * wh[:, :, 1]
        area1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * (
            bboxes1[:, 3] - bboxes1[:, 1] + 1)

        if mode == 'iou':
            area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * (
                bboxes2[:, 3] - bboxes2[:, 1] + 1)
            ious = overlap / (area1[:, None] + area2 - overlap)
        else:
            ious = overlap / (area1[:, None])

    return ious