inference.py 9.91 KB
Newer Older
bailuo's avatar
readme  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import warnings

import matplotlib.pyplot as plt
import mmcv
import numpy as np
import pycocotools.mask as maskUtils
import torch
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint

from mmdet.core import get_classes
from mmdet.datasets.pipelines import Compose
from mmdet.models import build_detector

import cv2
from scipy import ndimage

def init_detector(config, checkpoint=None, device='cuda:0'):
    """Initialize a detector from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        'but got {}'.format(type(config)))
    config.model.pretrained = None
    model = build_detector(config.model, test_cfg=config.test_cfg)
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint)
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use COCO classes by default.')
            model.CLASSES = get_classes('coco')
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model


class LoadImage(object):

    def __call__(self, results):
        if isinstance(results['img'], str):
            results['filename'] = results['img']
        else:
            results['filename'] = None
        img = mmcv.imread(results['img'])
        results['img'] = img
        results['img_shape'] = img.shape
        results['ori_shape'] = img.shape
        return results


def inference_detector(model, img):
    """Inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        If imgs is a str, a generator will be returned, otherwise return the
        detection results directly.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)
    data = scatter(collate([data], samples_per_gpu=1), [device])[0]
    # forward the model
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result


async def async_inference_detector(model, img):
    """Async inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        Awaitable detection results.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)
    data = scatter(collate([data], samples_per_gpu=1), [device])[0]

    # We don't restore `torch.is_grad_enabled()` value during concurrent
    # inference since execution can overlap
    torch.set_grad_enabled(False)
    result = await model.aforward_test(rescale=True, **data)
    return result


# TODO: merge this method with the one in BaseDetector
def show_result(img,
                result,
                class_names,
                score_thr=0.3,
                wait_time=0,
                show=True,
                out_file=None):
    """Visualize the detection results on the image.

    Args:
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        class_names (list[str] or tuple[str]): A list of class names.
        score_thr (float): The threshold to visualize the bboxes and masks.
        wait_time (int): Value of waitKey param.
        show (bool, optional): Whether to show the image with opencv or not.
        out_file (str, optional): If specified, the visualization result will
            be written to the out file instead of shown in a window.

    Returns:
        np.ndarray or None: If neither `show` nor `out_file` is specified, the
            visualized image is returned, otherwise None is returned.
    """
    assert isinstance(class_names, (tuple, list))
    img = mmcv.imread(img)
    img = img.copy()
    if isinstance(result, tuple):
        bbox_result, segm_result = result
    else:
        bbox_result, segm_result = result, None
    bboxes = np.vstack(bbox_result)
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(bbox_result)
    ]
    labels = np.concatenate(labels)
    # draw segmentation masks
    if segm_result is not None:
        segms = mmcv.concat_list(segm_result)
        inds = np.where(bboxes[:, -1] > score_thr)[0]
        np.random.seed(42)
        color_masks = [
            np.random.randint(0, 256, (1, 3), dtype=np.uint8)
            for _ in range(max(labels) + 1)
        ]
        for i in inds:
            i = int(i)
            color_mask = color_masks[labels[i]]
            mask = maskUtils.decode(segms[i]).astype(np.bool)
            img[mask] = img[mask] * 0.5 + color_mask * 0.5
    # draw bounding boxes
    mmcv.imshow_det_bboxes(
        img,
        bboxes,
        labels,
        class_names=class_names,
        score_thr=score_thr,
        show=show,
        wait_time=wait_time,
        out_file=out_file)
    if not (show or out_file):
        return img


def show_result_pyplot(img,
                       result,
                       class_names,
                       score_thr=0.3,
                       fig_size=(15, 10)):
    """Visualize the detection results on the image.

    Args:
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        class_names (list[str] or tuple[str]): A list of class names.
        score_thr (float): The threshold to visualize the bboxes and masks.
        fig_size (tuple): Figure size of the pyplot figure.
        out_file (str, optional): If specified, the visualization result will
            be written to the out file instead of shown in a window.
    """
    img = show_result(
        img, result, class_names, score_thr=score_thr, show=False)
    plt.figure(figsize=fig_size)
    plt.imshow(mmcv.bgr2rgb(img))


def show_result_ins(img,
                    result,
                    class_names,
                    score_thr=0.3,
                    sort_by_density=False,
                    out_file=None):
    """Visualize the instance segmentation results on the image.

    Args:
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The instance segmentation result.
        class_names (list[str] or tuple[str]): A list of class names.
        score_thr (float): The threshold to visualize the masks.
        sort_by_density (bool): sort the masks by their density.
        out_file (str, optional): If specified, the visualization result will
            be written to the out file instead of shown in a window.

    Returns:
        np.ndarray or None: If neither `show` nor `out_file` is specified, the
            visualized image is returned, otherwise None is returned.
    """

    assert isinstance(class_names, (tuple, list))
    img = mmcv.imread(img)
    img_show = img.copy()
    h, w, _ = img.shape

    if not result or result == [None]:
        return img_show
    cur_result = result[0]
    seg_label = cur_result[0]
    seg_label = seg_label.cpu().numpy().astype(np.uint8)
    cate_label = cur_result[1]
    cate_label = cate_label.cpu().numpy()
    score = cur_result[2].cpu().numpy()

    vis_inds = score > score_thr
    seg_label = seg_label[vis_inds]
    num_mask = seg_label.shape[0]
    cate_label = cate_label[vis_inds]
    cate_score = score[vis_inds]

    if sort_by_density:
        mask_density = []
        for idx in range(num_mask):
            cur_mask = seg_label[idx, :, :]
            cur_mask = mmcv.imresize(cur_mask, (w, h))
            cur_mask = (cur_mask > 0.5).astype(np.int32)
            mask_density.append(cur_mask.sum())
        orders = np.argsort(mask_density)
        seg_label = seg_label[orders]
        cate_label = cate_label[orders]
        cate_score = cate_score[orders]

    np.random.seed(42)
    color_masks = [
        np.random.randint(0, 256, (1, 3), dtype=np.uint8)
        for _ in range(num_mask)
    ]
    for idx in range(num_mask):
        idx = -(idx+1)
        cur_mask = seg_label[idx, :, :]
        cur_mask = mmcv.imresize(cur_mask, (w, h))
        cur_mask = (cur_mask > 0.5).astype(np.uint8)
        if cur_mask.sum() == 0:
            continue
        color_mask = color_masks[idx]
        cur_mask_bool = cur_mask.astype(np.bool)
        img_show[cur_mask_bool] = img[cur_mask_bool] * 0.5 + color_mask * 0.5

        cur_cate = cate_label[idx]
        cur_score = cate_score[idx]
        label_text = class_names[cur_cate]
        #label_text += '|{:.02f}'.format(cur_score)
        center_y, center_x = ndimage.measurements.center_of_mass(cur_mask)
        vis_pos = (max(int(center_x) - 10, 0), int(center_y))
        cv2.putText(img_show, label_text, vis_pos,
                        cv2.FONT_HERSHEY_COMPLEX, 0.3, (255, 255, 255))  # green
    if out_file is None:
        return img_show
    else:
        mmcv.imwrite(img_show, out_file)