TECHNICAL_DETAILS.md 6.94 KB
Newer Older
bailuo's avatar
readme  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Technical Details

In this section, we will introduce the main units of training a detector:
data pipeline, model and iteration pipeline.

## Data pipeline

Following typical conventions, we use `Dataset` and `DataLoader` for data loading
with multiple workers. `Dataset` returns a dict of data items corresponding
the arguments of models' forward method.
Since the data in object detection may not be the same size (image size, gt bbox size, etc.),
we introduce a new `DataContainer` type in MMCV to help collect and distribute
data of different size.
See [here](https://github.com/open-mmlab/mmcv/blob/master/mmcv/parallel/data_container.py) for more details.

The data preparation pipeline and the dataset is decomposed. Usually a dataset
defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict.
A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next transform.

We present a classical pipeline in the following figure. The blue blocks are pipeline operations. With the pipeline going on, each operator can add new keys (marked as green) to the result dict or update the existing keys (marked as orange).
![pipeline figure](../demo/data_pipeline.png)

The operations are categorized into data loading, pre-processing, formatting and test-time augmentation.

Here is an pipeline example for Faster R-CNN.
```python
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
```

For each operation, we list the related dict fields that are added/updated/removed.

### Data loading

`LoadImageFromFile`
- add: img, img_shape, ori_shape

`LoadAnnotations`
- add: gt_bboxes, gt_bboxes_ignore, gt_labels, gt_masks, gt_semantic_seg, bbox_fields, mask_fields

`LoadProposals`
- add: proposals

### Pre-processing

`Resize`
- add: scale, scale_idx, pad_shape, scale_factor, keep_ratio
- update: img, img_shape, *bbox_fields, *mask_fields, *seg_fields

`RandomFlip`
- add: flip
- update: img, *bbox_fields, *mask_fields, *seg_fields

`Pad`
- add: pad_fixed_size, pad_size_divisor
- update: img, pad_shape, *mask_fields, *seg_fields

`RandomCrop`
- update: img, pad_shape, gt_bboxes, gt_labels, gt_masks, *bbox_fields

`Normalize`
- add: img_norm_cfg
- update: img

`SegRescale`
- update: gt_semantic_seg

`PhotoMetricDistortion`
- update: img

`Expand`
- update: img, gt_bboxes

`MinIoURandomCrop`
- update: img, gt_bboxes, gt_labels

`Corrupt`
- update: img

### Formatting

`ToTensor`
- update: specified by `keys`.

`ImageToTensor`
- update: specified by `keys`.

`Transpose`
- update: specified by `keys`.

`ToDataContainer`
- update: specified by `fields`.

`DefaultFormatBundle`
- update: img, proposals, gt_bboxes, gt_bboxes_ignore, gt_labels, gt_masks, gt_semantic_seg

`Collect`
- add: img_meta (the keys of img_meta is specified by `meta_keys`)
- remove: all other keys except for those specified by `keys`

### Test time augmentation

`MultiScaleFlipAug`

## Model

In MMDetection, model components are basically categorized as 4 types.

- backbone: usually a FCN network to extract feature maps, e.g., ResNet.
- neck: the part between backbones and heads, e.g., FPN, ASPP.
- head: the part for specific tasks, e.g., bbox prediction and mask prediction.
- roi extractor: the part for extracting features from feature maps, e.g., RoI Align.

We also write implement some general detection pipelines with the above components,
such as `SingleStageDetector` and `TwoStageDetector`.

### Build a model with basic components

Following some basic pipelines (e.g., two-stage detectors), the model structure
can be customized through config files with no pains.

If we want to implement some new components, e.g, the path aggregation
FPN structure in [Path Aggregation Network for Instance Segmentation](https://arxiv.org/abs/1803.01534), there are two things to do.

1. create a new file in `mmdet/models/necks/pafpn.py`.

    ```python
    from ..registry import NECKS

    @NECKS.register
    class PAFPN(nn.Module):

        def __init__(self,
                    in_channels,
                    out_channels,
                    num_outs,
                    start_level=0,
                    end_level=-1,
                    add_extra_convs=False):
            pass

        def forward(self, inputs):
            # implementation is ignored
            pass
    ```

2. Import the module in `mmdet/models/necks/__init__.py`.

    ```python
    from .pafpn import PAFPN
    ```

2. modify the config file from

    ```python
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5)
    ```

    to

    ```python
    neck=dict(
        type='PAFPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5)
    ```

We will release more components (backbones, necks, heads) for research purpose.

### Write a new model

To write a new detection pipeline, you need to inherit from `BaseDetector`,
which defines the following abstract methods.

- `extract_feat()`: given an image batch of shape (n, c, h, w), extract the feature map(s).
- `forward_train()`: forward method of the training mode
- `simple_test()`: single scale testing without augmentation
- `aug_test()`: testing with augmentation (multi-scale, flip, etc.)

[TwoStageDetector](https://github.com/hellock/mmdetection/blob/master/mmdet/models/detectors/two_stage.py)
is a good example which shows how to do that.

## Iteration pipeline

We adopt distributed training for both single machine and multiple machines.
Supposing that the server has 8 GPUs, 8 processes will be started and each process runs on a single GPU.

Each process keeps an isolated model, data loader, and optimizer.
Model parameters are only synchronized once at the beginning.
After a forward and backward pass, gradients will be allreduced among all GPUs,
and the optimizer will update model parameters.
Since the gradients are allreduced, the model parameter stays the same for all processes after the iteration.

## Other information

For more information, please refer to our [technical report](https://arxiv.org/abs/1906.07155).