bbox_r50_grid_fpn_1x.py 4.24 KB
Newer Older
bailuo's avatar
readme  
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# model settings
norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)

model = dict(
    type='RepPointsDetector',
    pretrained='torchvision://resnet50',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        style='pytorch'),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        start_level=1,
        add_extra_convs=True,
        num_outs=5,
        norm_cfg=norm_cfg),
    bbox_head=dict(
        type='RepPointsHead',
        num_classes=81,
        in_channels=256,
        feat_channels=256,
        point_feat_channels=256,
        stacked_convs=3,
        num_points=9,
        gradient_mul=0.1,
        point_strides=[8, 16, 32, 64, 128],
        point_base_scale=4,
        norm_cfg=norm_cfg,
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox_init=dict(type='SmoothL1Loss', beta=0.11, loss_weight=0.5),
        loss_bbox_refine=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
        transform_method='minmax',
        use_grid_points=True))
# training and testing settings
train_cfg = dict(
    init=dict(
        assigner=dict(
            type='MaxIoUAssigner',
            pos_iou_thr=0.5,
            neg_iou_thr=0.4,
            min_pos_iou=0,
            ignore_iof_thr=-1),
        allowed_border=-1,
        pos_weight=-1,
        debug=False),
    refine=dict(
        assigner=dict(
            type='MaxIoUAssigner',
            pos_iou_thr=0.5,
            neg_iou_thr=0.4,
            min_pos_iou=0,
            ignore_iof_thr=-1),
        allowed_border=-1,
        pos_weight=-1,
        debug=False))
test_cfg = dict(
    nms_pre=1000,
    min_bbox_size=0,
    score_thr=0.05,
    nms=dict(type='nms', iou_thr=0.5),
    max_per_img=100)
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
    step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/bbox_r50_grid_fpn_1x'
load_from = None
resume_from = None
auto_resume = True
workflow = [('train', 1)]