cascade_rcnn.py 12.7 KB
Newer Older
1
2
from __future__ import division

Kai Chen's avatar
Kai Chen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import torch.nn as nn

from .base import BaseDetector
from .test_mixins import RPNTestMixin
from .. import builder
from mmdet.core import (assign_and_sample, bbox2roi, bbox2result, multi_apply,
                        merge_aug_masks)


class CascadeRCNN(BaseDetector, RPNTestMixin):

    def __init__(self,
                 num_stages,
                 backbone,
                 neck=None,
                 rpn_head=None,
                 bbox_roi_extractor=None,
                 bbox_head=None,
                 mask_roi_extractor=None,
                 mask_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        assert bbox_roi_extractor is not None
        assert bbox_head is not None
        super(CascadeRCNN, self).__init__()

        self.num_stages = num_stages
        self.backbone = builder.build_backbone(backbone)

        if neck is not None:
            self.neck = builder.build_neck(neck)
        else:
            raise NotImplementedError

        if rpn_head is not None:
            self.rpn_head = builder.build_rpn_head(rpn_head)

        if bbox_head is not None:
            self.bbox_roi_extractor = nn.ModuleList()
            self.bbox_head = nn.ModuleList()
            if not isinstance(bbox_roi_extractor, list):
                bbox_roi_extractor = [
                    bbox_roi_extractor for _ in range(num_stages)
                ]
            if not isinstance(bbox_head, list):
                bbox_head = [bbox_head for _ in range(num_stages)]
            assert len(bbox_roi_extractor) == len(bbox_head) == self.num_stages
            for roi_extractor, head in zip(bbox_roi_extractor, bbox_head):
                self.bbox_roi_extractor.append(
                    builder.build_roi_extractor(roi_extractor))
                self.bbox_head.append(builder.build_bbox_head(head))

        if mask_head is not None:
            self.mask_roi_extractor = nn.ModuleList()
            self.mask_head = nn.ModuleList()
            if not isinstance(mask_roi_extractor, list):
                mask_roi_extractor = [
                    mask_roi_extractor for _ in range(num_stages)
                ]
            if not isinstance(mask_head, list):
                mask_head = [mask_head for _ in range(num_stages)]
            assert len(mask_roi_extractor) == len(mask_head) == self.num_stages
            for roi_extractor, head in zip(mask_roi_extractor, mask_head):
                self.mask_roi_extractor.append(
                    builder.build_roi_extractor(roi_extractor))
                self.mask_head.append(builder.build_mask_head(head))

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        self.init_weights(pretrained=pretrained)

    @property
    def with_rpn(self):
        return hasattr(self, 'rpn_head') and self.rpn_head is not None

    def init_weights(self, pretrained=None):
        super(CascadeRCNN, self).init_weights(pretrained)
        self.backbone.init_weights(pretrained=pretrained)
        if self.with_neck:
            if isinstance(self.neck, nn.Sequential):
                for m in self.neck:
                    m.init_weights()
            else:
                self.neck.init_weights()
        if self.with_rpn:
            self.rpn_head.init_weights()
        for i in range(self.num_stages):
            if self.with_bbox:
                self.bbox_roi_extractor[i].init_weights()
                self.bbox_head[i].init_weights()
            if self.with_mask:
                self.mask_roi_extractor[i].init_weights()
                self.mask_head[i].init_weights()

    def extract_feat(self, img):
        x = self.backbone(img)
        if self.with_neck:
            x = self.neck(x)
        return x

    def forward_train(self,
                      img,
                      img_meta,
                      gt_bboxes,
                      gt_bboxes_ignore,
                      gt_labels,
                      gt_masks=None,
                      proposals=None):
        x = self.extract_feat(img)

        losses = dict()

        if self.with_rpn:
            rpn_outs = self.rpn_head(x)
            rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta,
                                          self.train_cfg.rpn)
            rpn_losses = self.rpn_head.loss(*rpn_loss_inputs)
            losses.update(rpn_losses)

            proposal_inputs = rpn_outs + (img_meta, self.test_cfg.rpn)
            proposal_list = self.rpn_head.get_proposals(*proposal_inputs)
        else:
            proposal_list = proposals

        for i in range(self.num_stages):
            rcnn_train_cfg = self.train_cfg.rcnn[i]
132
            lw = self.train_cfg.stage_loss_weights[i]
Kai Chen's avatar
Kai Chen committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

            # assign gts and sample proposals
            assign_results, sampling_results = multi_apply(
                assign_and_sample,
                proposal_list,
                gt_bboxes,
                gt_bboxes_ignore,
                gt_labels,
                cfg=rcnn_train_cfg)

            # bbox head forward and loss
            bbox_roi_extractor = self.bbox_roi_extractor[i]
            bbox_head = self.bbox_head[i]

            rois = bbox2roi([res.bboxes for res in sampling_results])
            bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs],
                                            rois)
            cls_score, bbox_pred = bbox_head(bbox_feats)

            bbox_targets = bbox_head.get_target(sampling_results, gt_bboxes,
                                                gt_labels, rcnn_train_cfg)
            loss_bbox = bbox_head.loss(cls_score, bbox_pred, *bbox_targets)
            for name, value in loss_bbox.items():
                losses['s{}.{}'.format(i, name)] = (value * lw if
                                                    'loss' in name else value)

            # mask head forward and loss
            if self.with_mask:
                mask_roi_extractor = self.mask_roi_extractor[i]
                mask_head = self.mask_head[i]
                pos_rois = bbox2roi(
                    [res.pos_bboxes for res in sampling_results])
                mask_feats = mask_roi_extractor(
                    x[:mask_roi_extractor.num_inputs], pos_rois)
                mask_pred = mask_head(mask_feats)
                mask_targets = mask_head.get_target(sampling_results, gt_masks,
                                                    rcnn_train_cfg)
                pos_labels = torch.cat(
                    [res.pos_gt_labels for res in sampling_results])
                loss_mask = mask_head.loss(mask_pred, mask_targets, pos_labels)
                for name, value in loss_mask.items():
                    losses['s{}.{}'.format(i, name)] = (value * lw
                                                        if 'loss' in name else
                                                        value)

            # refine bboxes
            if i < self.num_stages - 1:
                pos_is_gts = [res.pos_is_gt for res in sampling_results]
                roi_labels = bbox_targets[0]  # bbox_targets is a tuple
                with torch.no_grad():
                    proposal_list = bbox_head.refine_bboxes(
                        rois, roi_labels, bbox_pred, pos_is_gts, img_meta)

        return losses

    def simple_test(self, img, img_meta, proposals=None, rescale=False):
        x = self.extract_feat(img)
        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals

        img_shape = img_meta[0]['img_shape']
        ori_shape = img_meta[0]['ori_shape']
        scale_factor = img_meta[0]['scale_factor']

        # "ms" in variable names means multi-stage
198
199
        ms_bbox_result = {}
        ms_segm_result = {}
Kai Chen's avatar
Kai Chen committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        ms_scores = []
        rcnn_test_cfg = self.test_cfg.rcnn

        rois = bbox2roi(proposal_list)
        for i in range(self.num_stages):
            bbox_roi_extractor = self.bbox_roi_extractor[i]
            bbox_head = self.bbox_head[i]

            bbox_feats = bbox_roi_extractor(
                x[:len(bbox_roi_extractor.featmap_strides)], rois)
            cls_score, bbox_pred = bbox_head(bbox_feats)
            ms_scores.append(cls_score)

            if self.test_cfg.keep_all_stages:
                det_bboxes, det_labels = bbox_head.get_det_bboxes(
                    rois,
                    cls_score,
                    bbox_pred,
                    img_shape,
                    scale_factor,
                    rescale=rescale,
                    nms_cfg=rcnn_test_cfg)
                bbox_result = bbox2result(det_bboxes, det_labels,
                                          bbox_head.num_classes)
224
                ms_bbox_result['stage{}'.format(i)] = bbox_result
Kai Chen's avatar
Kai Chen committed
225
226

                if self.with_mask:
227
228
                    mask_roi_extractor = self.mask_roi_extractor[i]
                    mask_head = self.mask_head[i]
Kai Chen's avatar
Kai Chen committed
229
230
231
232
233
                    if det_bboxes.shape[0] == 0:
                        segm_result = [
                            [] for _ in range(mask_head.num_classes - 1)
                        ]
                    else:
Kai Chen's avatar
bug fix  
Kai Chen committed
234
                        _bboxes = (det_bboxes[:, :4] * scale_factor
Kai Chen's avatar
Kai Chen committed
235
236
                                   if rescale else det_bboxes)
                        mask_rois = bbox2roi([_bboxes])
237
238
239
                        mask_feats = mask_roi_extractor(
                            x[:len(mask_roi_extractor.featmap_strides)],
                            mask_rois)
Kai Chen's avatar
Kai Chen committed
240
241
242
243
                        mask_pred = mask_head(mask_feats)
                        segm_result = mask_head.get_seg_masks(
                            mask_pred, _bboxes, det_labels, rcnn_test_cfg,
                            ori_shape, scale_factor, rescale)
244
                    ms_segm_result['stage{}'.format(i)] = segm_result
Kai Chen's avatar
Kai Chen committed
245
246
247
248
249
250

            if i < self.num_stages - 1:
                bbox_label = cls_score.argmax(dim=1)
                rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred,
                                                  img_meta[0])

Kai Chen's avatar
Kai Chen committed
251
        cls_score = sum(ms_scores) / self.num_stages
Kai Chen's avatar
Kai Chen committed
252
253
254
255
256
257
258
259
260
261
        det_bboxes, det_labels = self.bbox_head[-1].get_det_bboxes(
            rois,
            cls_score,
            bbox_pred,
            img_shape,
            scale_factor,
            rescale=rescale,
            nms_cfg=rcnn_test_cfg)
        bbox_result = bbox2result(det_bboxes, det_labels,
                                  self.bbox_head[-1].num_classes)
262
        ms_bbox_result['ensemble'] = bbox_result
Kai Chen's avatar
Kai Chen committed
263
264

        if self.with_mask:
Kai Chen's avatar
Kai Chen committed
265
            if det_bboxes.shape[0] == 0:
Kai Chen's avatar
bug fix  
Kai Chen committed
266
267
268
                segm_result = [
                    [] for _ in range(self.mask_head[-1].num_classes - 1)
                ]
Kai Chen's avatar
Kai Chen committed
269
            else:
Kai Chen's avatar
bug fix  
Kai Chen committed
270
                _bboxes = (det_bboxes[:, :4] * scale_factor
Kai Chen's avatar
Kai Chen committed
271
272
273
274
275
276
277
278
279
280
                           if rescale else det_bboxes)
                mask_rois = bbox2roi([_bboxes])
                aug_masks = []
                for i in range(self.num_stages):
                    mask_roi_extractor = self.mask_roi_extractor[i]
                    mask_feats = mask_roi_extractor(
                        x[:len(mask_roi_extractor.featmap_strides)], mask_rois)
                    mask_pred = self.mask_head[i](mask_feats)
                    aug_masks.append(mask_pred.sigmoid().cpu().numpy())
                merged_masks = merge_aug_masks(aug_masks,
Kai Chen's avatar
bug fix  
Kai Chen committed
281
                                               [img_meta] * self.num_stages,
Kai Chen's avatar
Kai Chen committed
282
283
284
285
                                               self.test_cfg.rcnn)
                segm_result = self.mask_head[-1].get_seg_masks(
                    merged_masks, _bboxes, det_labels, rcnn_test_cfg,
                    ori_shape, scale_factor, rescale)
286
            ms_segm_result['ensemble'] = segm_result
Kai Chen's avatar
Kai Chen committed
287

Kai Chen's avatar
Kai Chen committed
288
289
        if not self.test_cfg.keep_all_stages:
            if self.with_mask:
Kai Chen's avatar
Kai Chen committed
290
291
292
293
                results = (ms_bbox_result['ensemble'],
                           ms_segm_result['ensemble'])
            else:
                results = ms_bbox_result['ensemble']
Kai Chen's avatar
Kai Chen committed
294
        else:
Kai Chen's avatar
Kai Chen committed
295
296
297
298
299
300
301
302
303
            if self.with_mask:
                results = {
                    stage: (ms_bbox_result[stage], ms_segm_result[stage])
                    for stage in ms_bbox_result
                }
            else:
                results = ms_bbox_result

        return results
Kai Chen's avatar
Kai Chen committed
304
305
306
307
308
309
310
311
312
313

    def aug_test(self, img, img_meta, proposals=None, rescale=False):
        raise NotImplementedError

    def show_result(self, data, result, img_norm_cfg, **kwargs):
        # TODO: show segmentation masks
        if self.with_mask:
            ms_bbox_result, ms_segm_result = result
        else:
            ms_bbox_result = result
314
315
316
317
318
319
        if isinstance(ms_bbox_result, dict):
            bbox_result = ms_bbox_result['ensemble']
        else:
            bbox_result = ms_bbox_result
        super(CascadeRCNN, self).show_result(data, bbox_result, img_norm_cfg,
                                             **kwargs)