losses.py 7.86 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
# TODO merge naive and weighted loss.
pangjm's avatar
pangjm committed
2
3
4
import torch
import torch.nn.functional as F

5
from ..bbox import bbox_overlaps
Cao Yuhang's avatar
Cao Yuhang committed
6
7
from ...ops import sigmoid_focal_loss

pangjm's avatar
pangjm committed
8

Kai Chen's avatar
Kai Chen committed
9
10
11
12
13
def weighted_nll_loss(pred, label, weight, avg_factor=None):
    if avg_factor is None:
        avg_factor = max(torch.sum(weight > 0).float().item(), 1.)
    raw = F.nll_loss(pred, label, reduction='none')
    return torch.sum(raw * weight)[None] / avg_factor
pangjm's avatar
pangjm committed
14
15


16
def weighted_cross_entropy(pred, label, weight, avg_factor=None, reduce=True):
Kai Chen's avatar
Kai Chen committed
17
18
19
    if avg_factor is None:
        avg_factor = max(torch.sum(weight > 0).float().item(), 1.)
    raw = F.cross_entropy(pred, label, reduction='none')
yhcao6's avatar
rename  
yhcao6 committed
20
    if reduce:
yhcao6's avatar
yhcao6 committed
21
        return torch.sum(raw * weight)[None] / avg_factor
yhcao6's avatar
yhcao6 committed
22
    else:
yhcao6's avatar
yhcao6 committed
23
        return raw * weight / avg_factor
pangjm's avatar
pangjm committed
24
25


Kai Chen's avatar
Kai Chen committed
26
def weighted_binary_cross_entropy(pred, label, weight, avg_factor=None):
27
28
    if pred.dim() != label.dim():
        label, weight = _expand_binary_labels(label, weight, pred.size(-1))
Kai Chen's avatar
Kai Chen committed
29
30
    if avg_factor is None:
        avg_factor = max(torch.sum(weight > 0).float().item(), 1.)
pangjm's avatar
pangjm committed
31
32
    return F.binary_cross_entropy_with_logits(
        pred, label.float(), weight.float(),
Kai Chen's avatar
Kai Chen committed
33
        reduction='sum')[None] / avg_factor
pangjm's avatar
pangjm committed
34
35


Cao Yuhang's avatar
Cao Yuhang committed
36
37
38
39
40
41
def py_sigmoid_focal_loss(pred,
                          target,
                          weight,
                          gamma=2.0,
                          alpha=0.25,
                          reduction='mean'):
pangjm's avatar
pangjm committed
42
    pred_sigmoid = pred.sigmoid()
43
    target = target.type_as(pred)
pangjm's avatar
pangjm committed
44
45
46
    pt = (1 - pred_sigmoid) * target + pred_sigmoid * (1 - target)
    weight = (alpha * target + (1 - alpha) * (1 - target)) * weight
    weight = weight * pt.pow(gamma)
47
48
    loss = F.binary_cross_entropy_with_logits(pred, target,
                                              reduction='none') * weight
Kai Chen's avatar
Kai Chen committed
49
50
51
52
53
54
55
56
    reduction_enum = F._Reduction.get_enum(reduction)
    # none: 0, mean:1, sum: 2
    if reduction_enum == 0:
        return loss
    elif reduction_enum == 1:
        return loss.mean()
    elif reduction_enum == 2:
        return loss.sum()
pangjm's avatar
pangjm committed
57
58
59
60
61
62
63


def weighted_sigmoid_focal_loss(pred,
                                target,
                                weight,
                                gamma=2.0,
                                alpha=0.25,
Kai Chen's avatar
Kai Chen committed
64
                                avg_factor=None,
pangjm's avatar
pangjm committed
65
                                num_classes=80):
Kai Chen's avatar
Kai Chen committed
66
67
    if avg_factor is None:
        avg_factor = torch.sum(weight > 0).float().item() / num_classes + 1e-6
Cao Yuhang's avatar
Cao Yuhang committed
68
    return torch.sum(
69
70
        sigmoid_focal_loss(pred, target, gamma, alpha, 'none') *
        weight.view(-1, 1))[None] / avg_factor
pangjm's avatar
pangjm committed
71
72
73
74
75
76


def mask_cross_entropy(pred, target, label):
    num_rois = pred.size()[0]
    inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device)
    pred_slice = pred[inds, label].squeeze(1)
77
78
79
    return F.binary_cross_entropy_with_logits(pred_slice,
                                              target,
                                              reduction='mean')[None]
pangjm's avatar
pangjm committed
80
81


Kai Chen's avatar
Kai Chen committed
82
def smooth_l1_loss(pred, target, beta=1.0, reduction='mean'):
pangjm's avatar
pangjm committed
83
84
85
86
87
    assert beta > 0
    assert pred.size() == target.size() and target.numel() > 0
    diff = torch.abs(pred - target)
    loss = torch.where(diff < beta, 0.5 * diff * diff / beta,
                       diff - 0.5 * beta)
Kai Chen's avatar
Kai Chen committed
88
89
90
    reduction_enum = F._Reduction.get_enum(reduction)
    # none: 0, mean:1, sum: 2
    if reduction_enum == 0:
Kai Chen's avatar
Kai Chen committed
91
        return loss
Kai Chen's avatar
Kai Chen committed
92
    elif reduction_enum == 1:
Kai Chen's avatar
Kai Chen committed
93
        return loss.sum() / pred.numel()
Kai Chen's avatar
Kai Chen committed
94
    elif reduction_enum == 2:
Kai Chen's avatar
Kai Chen committed
95
96
97
98
99
100
101
102
        return loss.sum()


def weighted_smoothl1(pred, target, weight, beta=1.0, avg_factor=None):
    if avg_factor is None:
        avg_factor = torch.sum(weight > 0).float().item() / 4 + 1e-6
    loss = smooth_l1_loss(pred, target, beta, reduction='none')
    return torch.sum(loss * weight)[None] / avg_factor
pangjm's avatar
pangjm committed
103
104


105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def bounded_iou_loss(pred, target, beta=0.2, eps=1e-3, reduction='mean'):
    """Improving Object Localization with Fitness NMS and Bounded IoU Loss,
    https://arxiv.org/abs/1711.00164.

    Args:
        pred (tensor): Predicted bboxes.
        target (tensor): Target bboxes.
        beta (float): beta parameter in smoothl1.
        eps (float): eps to avoid NaN.
        reduction (str): Reduction type.
    """
    pred_ctrx = (pred[:, 0] + pred[:, 2]) * 0.5
    pred_ctry = (pred[:, 1] + pred[:, 3]) * 0.5
    pred_w = pred[:, 2] - pred[:, 0] + 1
    pred_h = pred[:, 3] - pred[:, 1] + 1
    with torch.no_grad():
        target_ctrx = (target[:, 0] + target[:, 2]) * 0.5
        target_ctry = (target[:, 1] + target[:, 3]) * 0.5
        target_w = target[:, 2] - target[:, 0] + 1
        target_h = target[:, 3] - target[:, 1] + 1

    dx = target_ctrx - pred_ctrx
    dy = target_ctry - pred_ctry

    loss_dx = 1 - torch.max(
        (target_w - 2 * dx.abs()) /
        (target_w + 2 * dx.abs() + eps), torch.zeros_like(dx))
    loss_dy = 1 - torch.max(
        (target_h - 2 * dy.abs()) /
        (target_h + 2 * dy.abs() + eps), torch.zeros_like(dy))
    loss_dw = 1 - torch.min(target_w / (pred_w + eps), pred_w /
                            (target_w + eps))
    loss_dh = 1 - torch.min(target_h / (pred_h + eps), pred_h /
                            (target_h + eps))
    loss_comb = torch.stack([loss_dx, loss_dy, loss_dw, loss_dh],
                            dim=-1).view(loss_dx.size(0), -1)

    loss = torch.where(loss_comb < beta, 0.5 * loss_comb * loss_comb / beta,
                       loss_comb - 0.5 * beta)
    reduction_enum = F._Reduction.get_enum(reduction)
    # none: 0, mean:1, sum: 2
    if reduction_enum == 0:
        return loss
    elif reduction_enum == 1:
        return loss.sum() / pred.numel()
    elif reduction_enum == 2:
        return loss.sum()


def weighted_iou_loss(pred,
                      target,
                      weight,
                      style='naive',
                      beta=0.2,
                      eps=1e-3,
                      avg_factor=None):
    if style not in ['bounded', 'naive']:
        raise ValueError('Only support bounded iou loss and naive iou loss.')
    inds = torch.nonzero(weight[:, 0] > 0)
    if avg_factor is None:
        avg_factor = inds.numel() + 1e-6

    if inds.numel() > 0:
        inds = inds.squeeze(1)
    else:
        return (pred * weight).sum()[None] / avg_factor

    if style == 'bounded':
        loss = bounded_iou_loss(pred[inds],
                                target[inds],
                                beta=beta,
                                eps=eps,
                                reduction='sum')
    else:
        loss = iou_loss(pred[inds], target[inds], reduction='sum')
    loss = loss[None] / avg_factor
    return loss


pangjm's avatar
pangjm committed
184
185
186
187
def accuracy(pred, target, topk=1):
    if isinstance(topk, int):
        topk = (topk, )
        return_single = True
Kai Chen's avatar
Kai Chen committed
188
189
    else:
        return_single = False
pangjm's avatar
pangjm committed
190
191
192
193
194
195
196
197
198
199
200

    maxk = max(topk)
    _, pred_label = pred.topk(maxk, 1, True, True)
    pred_label = pred_label.t()
    correct = pred_label.eq(target.view(1, -1).expand_as(pred_label))

    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
        res.append(correct_k.mul_(100.0 / pred.size(0)))
    return res[0] if return_single else res
201
202
203
204
205
206
207


def _expand_binary_labels(labels, label_weights, label_channels):
    bin_labels = labels.new_full((labels.size(0), label_channels), 0)
    inds = torch.nonzero(labels >= 1).squeeze()
    if inds.numel() > 0:
        bin_labels[inds, labels[inds] - 1] = 1
208
209
210
    bin_label_weights = label_weights.view(-1,
                                           1).expand(label_weights.size(0),
                                                     label_channels)
211
    return bin_labels, bin_label_weights
212
213
214
215
216
217
218
219
220
221
222
223
224


def iou_loss(pred_bboxes, target_bboxes, reduction='mean'):
    ious = bbox_overlaps(pred_bboxes, target_bboxes, is_aligned=True)
    loss = -ious.log()

    reduction_enum = F._Reduction.get_enum(reduction)
    if reduction_enum == 0:
        return loss
    elif reduction_enum == 1:
        return loss.mean()
    elif reduction_enum == 2:
        return loss.sum()