cross_entropy_loss.py 3.31 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
import torch
Jiangmiao Pang's avatar
Jiangmiao Pang committed
2
import torch.nn as nn
Kai Chen's avatar
Kai Chen committed
3
import torch.nn.functional as F
Jiangmiao Pang's avatar
Jiangmiao Pang committed
4

5
from .utils import weight_reduce_loss
Jiangmiao Pang's avatar
Jiangmiao Pang committed
6
7
from ..registry import LOSSES

8
9
10
11
12
13
14
15
16
17
18
19

def cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None):
    # element-wise losses
    loss = F.cross_entropy(pred, label, reduction='none')

    # apply weights and do the reduction
    if weight is not None:
        weight = weight.float()
    loss = weight_reduce_loss(
        loss, weight=weight, reduction=reduction, avg_factor=avg_factor)

    return loss
Kai Chen's avatar
Kai Chen committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


def _expand_binary_labels(labels, label_weights, label_channels):
    bin_labels = labels.new_full((labels.size(0), label_channels), 0)
    inds = torch.nonzero(labels >= 1).squeeze()
    if inds.numel() > 0:
        bin_labels[inds, labels[inds] - 1] = 1
    if label_weights is None:
        bin_label_weights = None
    else:
        bin_label_weights = label_weights.view(-1, 1).expand(
            label_weights.size(0), label_channels)
    return bin_labels, bin_label_weights


def binary_cross_entropy(pred,
                         label,
                         weight=None,
                         reduction='mean',
                         avg_factor=None):
    if pred.dim() != label.dim():
        label, weight = _expand_binary_labels(label, weight, pred.size(-1))

43
    # weighted element-wise losses
Kai Chen's avatar
Kai Chen committed
44
45
46
47
    if weight is not None:
        weight = weight.float()
    loss = F.binary_cross_entropy_with_logits(
        pred, label.float(), weight, reduction='none')
48
49
    # do the reduction for the weighted loss
    loss = weight_reduce_loss(loss, reduction=reduction, avg_factor=avg_factor)
Kai Chen's avatar
Kai Chen committed
50
51
52
53
54
55
56
57
58
59
60
61
62

    return loss


def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=None):
    # TODO: handle these two reserved arguments
    assert reduction == 'mean' and avg_factor is None
    num_rois = pred.size()[0]
    inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device)
    pred_slice = pred[inds, label].squeeze(1)
    return F.binary_cross_entropy_with_logits(
        pred_slice, target, reduction='mean')[None]

Jiangmiao Pang's avatar
Jiangmiao Pang committed
63
64
65
66

@LOSSES.register_module
class CrossEntropyLoss(nn.Module):

Kai Chen's avatar
Kai Chen committed
67
68
69
70
71
    def __init__(self,
                 use_sigmoid=False,
                 use_mask=False,
                 reduction='mean',
                 loss_weight=1.0):
Jiangmiao Pang's avatar
Jiangmiao Pang committed
72
73
74
75
        super(CrossEntropyLoss, self).__init__()
        assert (use_sigmoid is False) or (use_mask is False)
        self.use_sigmoid = use_sigmoid
        self.use_mask = use_mask
Kai Chen's avatar
Kai Chen committed
76
        self.reduction = reduction
Jiangmiao Pang's avatar
Jiangmiao Pang committed
77
78
79
        self.loss_weight = loss_weight

        if self.use_sigmoid:
Kai Chen's avatar
Kai Chen committed
80
            self.cls_criterion = binary_cross_entropy
Jiangmiao Pang's avatar
Jiangmiao Pang committed
81
82
83
        elif self.use_mask:
            self.cls_criterion = mask_cross_entropy
        else:
Kai Chen's avatar
Kai Chen committed
84
            self.cls_criterion = cross_entropy
Jiangmiao Pang's avatar
Jiangmiao Pang committed
85

86
87
88
89
90
91
    def forward(self,
                cls_score,
                label,
                weight=None,
                avg_factor=None,
                reduction_override=None,
Kai Chen's avatar
Kai Chen committed
92
                **kwargs):
93
94
95
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
96
        loss_cls = self.loss_weight * self.cls_criterion(
Kai Chen's avatar
Kai Chen committed
97
98
99
            cls_score,
            label,
            weight,
100
            reduction=reduction,
Kai Chen's avatar
Kai Chen committed
101
102
            avg_factor=avg_factor,
            **kwargs)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
103
        return loss_cls