cascade_rcnn.py 12.8 KB
Newer Older
1
2
from __future__ import division

Kai Chen's avatar
Kai Chen committed
3
4
5
6
7
8
import torch
import torch.nn as nn

from .base import BaseDetector
from .test_mixins import RPNTestMixin
from .. import builder
Kai Chen's avatar
Kai Chen committed
9
from ..registry import DETECTORS
Kai Chen's avatar
Kai Chen committed
10
11
12
13
from mmdet.core import (assign_and_sample, bbox2roi, bbox2result, multi_apply,
                        merge_aug_masks)


Kai Chen's avatar
Kai Chen committed
14
@DETECTORS.register_module
Kai Chen's avatar
Kai Chen committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class CascadeRCNN(BaseDetector, RPNTestMixin):

    def __init__(self,
                 num_stages,
                 backbone,
                 neck=None,
                 rpn_head=None,
                 bbox_roi_extractor=None,
                 bbox_head=None,
                 mask_roi_extractor=None,
                 mask_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        assert bbox_roi_extractor is not None
        assert bbox_head is not None
        super(CascadeRCNN, self).__init__()

        self.num_stages = num_stages
        self.backbone = builder.build_backbone(backbone)

        if neck is not None:
            self.neck = builder.build_neck(neck)
        else:
            raise NotImplementedError

        if rpn_head is not None:
Kai Chen's avatar
Kai Chen committed
42
            self.rpn_head = builder.build_head(rpn_head)
Kai Chen's avatar
Kai Chen committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56

        if bbox_head is not None:
            self.bbox_roi_extractor = nn.ModuleList()
            self.bbox_head = nn.ModuleList()
            if not isinstance(bbox_roi_extractor, list):
                bbox_roi_extractor = [
                    bbox_roi_extractor for _ in range(num_stages)
                ]
            if not isinstance(bbox_head, list):
                bbox_head = [bbox_head for _ in range(num_stages)]
            assert len(bbox_roi_extractor) == len(bbox_head) == self.num_stages
            for roi_extractor, head in zip(bbox_roi_extractor, bbox_head):
                self.bbox_roi_extractor.append(
                    builder.build_roi_extractor(roi_extractor))
Kai Chen's avatar
Kai Chen committed
57
                self.bbox_head.append(builder.build_head(head))
Kai Chen's avatar
Kai Chen committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71

        if mask_head is not None:
            self.mask_roi_extractor = nn.ModuleList()
            self.mask_head = nn.ModuleList()
            if not isinstance(mask_roi_extractor, list):
                mask_roi_extractor = [
                    mask_roi_extractor for _ in range(num_stages)
                ]
            if not isinstance(mask_head, list):
                mask_head = [mask_head for _ in range(num_stages)]
            assert len(mask_roi_extractor) == len(mask_head) == self.num_stages
            for roi_extractor, head in zip(mask_roi_extractor, mask_head):
                self.mask_roi_extractor.append(
                    builder.build_roi_extractor(roi_extractor))
Kai Chen's avatar
Kai Chen committed
72
                self.mask_head.append(builder.build_head(head))
Kai Chen's avatar
Kai Chen committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        self.init_weights(pretrained=pretrained)

    @property
    def with_rpn(self):
        return hasattr(self, 'rpn_head') and self.rpn_head is not None

    def init_weights(self, pretrained=None):
        super(CascadeRCNN, self).init_weights(pretrained)
        self.backbone.init_weights(pretrained=pretrained)
        if self.with_neck:
            if isinstance(self.neck, nn.Sequential):
                for m in self.neck:
                    m.init_weights()
            else:
                self.neck.init_weights()
        if self.with_rpn:
            self.rpn_head.init_weights()
        for i in range(self.num_stages):
            if self.with_bbox:
                self.bbox_roi_extractor[i].init_weights()
                self.bbox_head[i].init_weights()
            if self.with_mask:
                self.mask_roi_extractor[i].init_weights()
                self.mask_head[i].init_weights()

    def extract_feat(self, img):
        x = self.backbone(img)
        if self.with_neck:
            x = self.neck(x)
        return x

    def forward_train(self,
                      img,
                      img_meta,
                      gt_bboxes,
                      gt_bboxes_ignore,
                      gt_labels,
                      gt_masks=None,
                      proposals=None):
        x = self.extract_feat(img)

        losses = dict()

        if self.with_rpn:
            rpn_outs = self.rpn_head(x)
            rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta,
                                          self.train_cfg.rpn)
            rpn_losses = self.rpn_head.loss(*rpn_loss_inputs)
            losses.update(rpn_losses)

            proposal_inputs = rpn_outs + (img_meta, self.test_cfg.rpn)
128
            proposal_list = self.rpn_head.get_bboxes(*proposal_inputs)
Kai Chen's avatar
Kai Chen committed
129
130
131
132
133
        else:
            proposal_list = proposals

        for i in range(self.num_stages):
            rcnn_train_cfg = self.train_cfg.rcnn[i]
134
            lw = self.train_cfg.stage_loss_weights[i]
Kai Chen's avatar
Kai Chen committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

            # assign gts and sample proposals
            assign_results, sampling_results = multi_apply(
                assign_and_sample,
                proposal_list,
                gt_bboxes,
                gt_bboxes_ignore,
                gt_labels,
                cfg=rcnn_train_cfg)

            # bbox head forward and loss
            bbox_roi_extractor = self.bbox_roi_extractor[i]
            bbox_head = self.bbox_head[i]

            rois = bbox2roi([res.bboxes for res in sampling_results])
            bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs],
                                            rois)
            cls_score, bbox_pred = bbox_head(bbox_feats)

            bbox_targets = bbox_head.get_target(sampling_results, gt_bboxes,
                                                gt_labels, rcnn_train_cfg)
            loss_bbox = bbox_head.loss(cls_score, bbox_pred, *bbox_targets)
            for name, value in loss_bbox.items():
                losses['s{}.{}'.format(i, name)] = (value * lw if
                                                    'loss' in name else value)

            # mask head forward and loss
            if self.with_mask:
                mask_roi_extractor = self.mask_roi_extractor[i]
                mask_head = self.mask_head[i]
                pos_rois = bbox2roi(
                    [res.pos_bboxes for res in sampling_results])
                mask_feats = mask_roi_extractor(
                    x[:mask_roi_extractor.num_inputs], pos_rois)
                mask_pred = mask_head(mask_feats)
                mask_targets = mask_head.get_target(sampling_results, gt_masks,
                                                    rcnn_train_cfg)
                pos_labels = torch.cat(
                    [res.pos_gt_labels for res in sampling_results])
                loss_mask = mask_head.loss(mask_pred, mask_targets, pos_labels)
                for name, value in loss_mask.items():
                    losses['s{}.{}'.format(i, name)] = (value * lw
                                                        if 'loss' in name else
                                                        value)

            # refine bboxes
            if i < self.num_stages - 1:
                pos_is_gts = [res.pos_is_gt for res in sampling_results]
                roi_labels = bbox_targets[0]  # bbox_targets is a tuple
                with torch.no_grad():
                    proposal_list = bbox_head.refine_bboxes(
                        rois, roi_labels, bbox_pred, pos_is_gts, img_meta)

        return losses

    def simple_test(self, img, img_meta, proposals=None, rescale=False):
        x = self.extract_feat(img)
        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals

        img_shape = img_meta[0]['img_shape']
        ori_shape = img_meta[0]['ori_shape']
        scale_factor = img_meta[0]['scale_factor']

        # "ms" in variable names means multi-stage
200
201
        ms_bbox_result = {}
        ms_segm_result = {}
Kai Chen's avatar
Kai Chen committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        ms_scores = []
        rcnn_test_cfg = self.test_cfg.rcnn

        rois = bbox2roi(proposal_list)
        for i in range(self.num_stages):
            bbox_roi_extractor = self.bbox_roi_extractor[i]
            bbox_head = self.bbox_head[i]

            bbox_feats = bbox_roi_extractor(
                x[:len(bbox_roi_extractor.featmap_strides)], rois)
            cls_score, bbox_pred = bbox_head(bbox_feats)
            ms_scores.append(cls_score)

            if self.test_cfg.keep_all_stages:
                det_bboxes, det_labels = bbox_head.get_det_bboxes(
                    rois,
                    cls_score,
                    bbox_pred,
                    img_shape,
                    scale_factor,
                    rescale=rescale,
223
                    cfg=rcnn_test_cfg)
Kai Chen's avatar
Kai Chen committed
224
225
                bbox_result = bbox2result(det_bboxes, det_labels,
                                          bbox_head.num_classes)
226
                ms_bbox_result['stage{}'.format(i)] = bbox_result
Kai Chen's avatar
Kai Chen committed
227
228

                if self.with_mask:
229
230
                    mask_roi_extractor = self.mask_roi_extractor[i]
                    mask_head = self.mask_head[i]
Kai Chen's avatar
Kai Chen committed
231
232
233
234
235
                    if det_bboxes.shape[0] == 0:
                        segm_result = [
                            [] for _ in range(mask_head.num_classes - 1)
                        ]
                    else:
Kai Chen's avatar
bug fix  
Kai Chen committed
236
                        _bboxes = (det_bboxes[:, :4] * scale_factor
Kai Chen's avatar
Kai Chen committed
237
238
                                   if rescale else det_bboxes)
                        mask_rois = bbox2roi([_bboxes])
239
240
241
                        mask_feats = mask_roi_extractor(
                            x[:len(mask_roi_extractor.featmap_strides)],
                            mask_rois)
Kai Chen's avatar
Kai Chen committed
242
243
244
245
                        mask_pred = mask_head(mask_feats)
                        segm_result = mask_head.get_seg_masks(
                            mask_pred, _bboxes, det_labels, rcnn_test_cfg,
                            ori_shape, scale_factor, rescale)
246
                    ms_segm_result['stage{}'.format(i)] = segm_result
Kai Chen's avatar
Kai Chen committed
247
248
249
250
251
252

            if i < self.num_stages - 1:
                bbox_label = cls_score.argmax(dim=1)
                rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred,
                                                  img_meta[0])

Kai Chen's avatar
Kai Chen committed
253
        cls_score = sum(ms_scores) / self.num_stages
Kai Chen's avatar
Kai Chen committed
254
255
256
257
258
259
260
        det_bboxes, det_labels = self.bbox_head[-1].get_det_bboxes(
            rois,
            cls_score,
            bbox_pred,
            img_shape,
            scale_factor,
            rescale=rescale,
261
            cfg=rcnn_test_cfg)
Kai Chen's avatar
Kai Chen committed
262
263
        bbox_result = bbox2result(det_bboxes, det_labels,
                                  self.bbox_head[-1].num_classes)
264
        ms_bbox_result['ensemble'] = bbox_result
Kai Chen's avatar
Kai Chen committed
265
266

        if self.with_mask:
Kai Chen's avatar
Kai Chen committed
267
            if det_bboxes.shape[0] == 0:
Kai Chen's avatar
bug fix  
Kai Chen committed
268
269
270
                segm_result = [
                    [] for _ in range(self.mask_head[-1].num_classes - 1)
                ]
Kai Chen's avatar
Kai Chen committed
271
            else:
Kai Chen's avatar
bug fix  
Kai Chen committed
272
                _bboxes = (det_bboxes[:, :4] * scale_factor
Kai Chen's avatar
Kai Chen committed
273
274
275
276
277
278
279
280
281
282
                           if rescale else det_bboxes)
                mask_rois = bbox2roi([_bboxes])
                aug_masks = []
                for i in range(self.num_stages):
                    mask_roi_extractor = self.mask_roi_extractor[i]
                    mask_feats = mask_roi_extractor(
                        x[:len(mask_roi_extractor.featmap_strides)], mask_rois)
                    mask_pred = self.mask_head[i](mask_feats)
                    aug_masks.append(mask_pred.sigmoid().cpu().numpy())
                merged_masks = merge_aug_masks(aug_masks,
Kai Chen's avatar
bug fix  
Kai Chen committed
283
                                               [img_meta] * self.num_stages,
Kai Chen's avatar
Kai Chen committed
284
285
286
287
                                               self.test_cfg.rcnn)
                segm_result = self.mask_head[-1].get_seg_masks(
                    merged_masks, _bboxes, det_labels, rcnn_test_cfg,
                    ori_shape, scale_factor, rescale)
288
            ms_segm_result['ensemble'] = segm_result
Kai Chen's avatar
Kai Chen committed
289

Kai Chen's avatar
Kai Chen committed
290
291
        if not self.test_cfg.keep_all_stages:
            if self.with_mask:
Kai Chen's avatar
Kai Chen committed
292
293
294
295
                results = (ms_bbox_result['ensemble'],
                           ms_segm_result['ensemble'])
            else:
                results = ms_bbox_result['ensemble']
Kai Chen's avatar
Kai Chen committed
296
        else:
Kai Chen's avatar
Kai Chen committed
297
298
299
300
301
302
303
304
305
            if self.with_mask:
                results = {
                    stage: (ms_bbox_result[stage], ms_segm_result[stage])
                    for stage in ms_bbox_result
                }
            else:
                results = ms_bbox_result

        return results
Kai Chen's avatar
Kai Chen committed
306
307
308
309
310
311
312

    def aug_test(self, img, img_meta, proposals=None, rescale=False):
        raise NotImplementedError

    def show_result(self, data, result, img_norm_cfg, **kwargs):
        if self.with_mask:
            ms_bbox_result, ms_segm_result = result
Kai Chen's avatar
Kai Chen committed
313
314
315
            if isinstance(ms_bbox_result, dict):
                result = (ms_bbox_result['ensemble'],
                          ms_segm_result['ensemble'])
Kai Chen's avatar
Kai Chen committed
316
        else:
Kai Chen's avatar
Kai Chen committed
317
318
319
            if isinstance(result, dict):
                result = result['ensemble']
        super(CascadeRCNN, self).show_result(data, result, img_norm_cfg,
320
                                             **kwargs)