r50_fpn_frcnn_1x.py 4.08 KB
Newer Older
pangjm's avatar
pangjm committed
1
2
# model settings
model = dict(
Kai Chen's avatar
Kai Chen committed
3
4
    type='FasterRCNN',
    pretrained='modelzoo://resnet50',
pangjm's avatar
pangjm committed
5
6
7
8
9
10
    backbone=dict(
        type='resnet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
11
        style='pytorch'),
pangjm's avatar
pangjm committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    rpn_head=dict(
        type='RPNHead',
        in_channels=256,
        feat_channels=256,
        anchor_scales=[8],
        anchor_ratios=[0.5, 1.0, 2.0],
        anchor_strides=[4, 8, 16, 32, 64],
        target_means=[.0, .0, .0, .0],
        target_stds=[1.0, 1.0, 1.0, 1.0],
        use_sigmoid_cls=True),
Kai Chen's avatar
Kai Chen committed
27
    bbox_roi_extractor=dict(
28
        type='SingleRoIExtractor',
pangjm's avatar
pangjm committed
29
30
31
32
33
34
35
36
37
38
39
40
41
        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
        out_channels=256,
        featmap_strides=[4, 8, 16, 32]),
    bbox_head=dict(
        type='SharedFCRoIHead',
        num_fcs=2,
        in_channels=256,
        fc_out_channels=1024,
        roi_feat_size=7,
        num_classes=81,
        target_means=[0., 0., 0., 0.],
        target_stds=[0.1, 0.1, 0.2, 0.2],
        reg_class_agnostic=False))
Kai Chen's avatar
Kai Chen committed
42
43
44
# model training and testing settings
train_cfg = dict(
    rpn=dict(
pangjm's avatar
pangjm committed
45
46
47
48
        pos_fraction=0.5,
        pos_balance_sampling=False,
        neg_pos_ub=256,
        allowed_border=0,
Kai Chen's avatar
Kai Chen committed
49
        crowd_thr=1.1,
pangjm's avatar
pangjm committed
50
51
52
53
        anchor_batch_size=256,
        pos_iou_thr=0.7,
        neg_iou_thr=0.3,
        neg_balance_thr=0,
Kai Chen's avatar
Kai Chen committed
54
        min_pos_iou=0.3,
pangjm's avatar
pangjm committed
55
56
57
        pos_weight=-1,
        smoothl1_beta=1 / 9.0,
        debug=False),
Kai Chen's avatar
Kai Chen committed
58
    rcnn=dict(
pangjm's avatar
pangjm committed
59
60
61
62
63
64
65
66
67
        pos_iou_thr=0.5,
        neg_iou_thr=0.5,
        crowd_thr=1.1,
        roi_batch_size=512,
        add_gt_as_proposals=True,
        pos_fraction=0.25,
        pos_balance_sampling=False,
        neg_pos_ub=512,
        neg_balance_thr=0,
68
        min_pos_iou=1.1,
pangjm's avatar
pangjm committed
69
        pos_weight=-1,
Kai Chen's avatar
Kai Chen committed
70
71
72
73
74
75
76
77
78
        debug=False))
test_cfg = dict(
    rpn=dict(
        nms_across_levels=False,
        nms_pre=2000,
        nms_post=2000,
        max_num=2000,
        nms_thr=0.7,
        min_bbox_size=0),
79
    rcnn=dict(score_thr=0.05, max_per_img=100, nms_thr=0.5))
pangjm's avatar
pangjm committed
80
# dataset settings
Kai Chen's avatar
Kai Chen committed
81
dataset_type = 'CocoDataset'
Kai Chen's avatar
Kai Chen committed
82
data_root = 'data/coco/'
pangjm's avatar
pangjm committed
83
img_norm_cfg = dict(
Kai Chen's avatar
Kai Chen committed
84
85
86
87
88
89
90
91
92
93
94
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
95
96
97
        flip_ratio=0.5,
        with_mask=False,
        with_crowd=True,
Kai Chen's avatar
Kai Chen committed
98
99
        with_label=True),
    val=dict(
Kai Chen's avatar
Kai Chen committed
100
101
102
103
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
Kai Chen's avatar
Kai Chen committed
104
105
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
Kai Chen's avatar
Kai Chen committed
106
        flip_ratio=0,
Kai Chen's avatar
Kai Chen committed
107
108
109
110
111
112
113
114
        with_mask=False,
        with_crowd=True,
        with_label=True),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
Kai Chen's avatar
Kai Chen committed
115
        img_norm_cfg=img_norm_cfg,
116
        size_divisor=32,
Kai Chen's avatar
Kai Chen committed
117
        flip_ratio=0,
118
119
120
        with_mask=False,
        with_label=False,
        test_mode=True))
pangjm's avatar
pangjm committed
121
122
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
Kai Chen's avatar
Kai Chen committed
123
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
pangjm's avatar
pangjm committed
124
# learning policy
Kai Chen's avatar
Kai Chen committed
125
lr_config = dict(
pangjm's avatar
pangjm committed
126
127
128
    policy='step',
    warmup='linear',
    warmup_iters=500,
Kai Chen's avatar
Kai Chen committed
129
    warmup_ratio=1.0 / 3,
pangjm's avatar
pangjm committed
130
131
132
133
    step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
Kai Chen's avatar
Kai Chen committed
134
    interval=50,
pangjm's avatar
pangjm committed
135
136
    hooks=[
        dict(type='TextLoggerHook'),
Kai Chen's avatar
Kai Chen committed
137
        # dict(type='TensorboardLoggerHook', log_dir=work_dir + '/log')
pangjm's avatar
pangjm committed
138
139
    ])
# yapf:enable
Kai Chen's avatar
Kai Chen committed
140
141
# runtime settings
total_epochs = 12
142
device_ids = range(8)
Kai Chen's avatar
Kai Chen committed
143
dist_params = dict(backend='gloo')
Kai Chen's avatar
Kai Chen committed
144
145
log_level = 'INFO'
work_dir = './work_dirs/fpn_faster_rcnn_r50_1x'
pangjm's avatar
pangjm committed
146
147
148
load_from = None
resume_from = None
workflow = [('train', 1)]