htc_r50_fpn_20e.py 8.43 KB
Newer Older
1
2
3
4
# model settings
model = dict(
    type='HybridTaskCascade',
    num_stages=3,
5
    pretrained='torchvision://resnet50',
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    interleaved=True,
    mask_info_flow=True,
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        style='pytorch'),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    rpn_head=dict(
        type='RPNHead',
        in_channels=256,
        feat_channels=256,
        anchor_scales=[8],
        anchor_ratios=[0.5, 1.0, 2.0],
        anchor_strides=[4, 8, 16, 32, 64],
        target_means=[.0, .0, .0, .0],
        target_stds=[1.0, 1.0, 1.0, 1.0],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
29
30
31
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    bbox_roi_extractor=dict(
        type='SingleRoIExtractor',
        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
        out_channels=256,
        featmap_strides=[4, 8, 16, 32]),
    bbox_head=[
        dict(
            type='SharedFCBBoxHead',
            num_fcs=2,
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=81,
            target_means=[0., 0., 0., 0.],
            target_stds=[0.1, 0.1, 0.2, 0.2],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
47
48
            reg_class_agnostic=True,
            loss_cls=dict(
49
50
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
51
52
53
54
55
56
57
58
59
        dict(
            type='SharedFCBBoxHead',
            num_fcs=2,
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=81,
            target_means=[0., 0., 0., 0.],
            target_stds=[0.05, 0.05, 0.1, 0.1],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
60
61
            reg_class_agnostic=True,
            loss_cls=dict(
62
63
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
64
65
66
67
68
69
70
71
72
        dict(
            type='SharedFCBBoxHead',
            num_fcs=2,
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=81,
            target_means=[0., 0., 0., 0.],
            target_stds=[0.033, 0.033, 0.067, 0.067],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
73
74
            reg_class_agnostic=True,
            loss_cls=dict(
75
76
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
77
78
79
80
81
82
83
84
85
86
87
    ],
    mask_roi_extractor=dict(
        type='SingleRoIExtractor',
        roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
        out_channels=256,
        featmap_strides=[4, 8, 16, 32]),
    mask_head=dict(
        type='HTCMaskHead',
        num_convs=4,
        in_channels=256,
        conv_out_channels=256,
Jiangmiao Pang's avatar
Jiangmiao Pang committed
88
89
90
        num_classes=81,
        loss_mask=dict(
            type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)),
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    semantic_roi_extractor=dict(
        type='SingleRoIExtractor',
        roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
        out_channels=256,
        featmap_strides=[8]),
    semantic_head=dict(
        type='FusedSemanticHead',
        num_ins=5,
        fusion_level=1,
        num_convs=4,
        in_channels=256,
        conv_out_channels=256,
        num_classes=183,
        ignore_label=255,
        loss_weight=0.2))
# model training and testing settings
train_cfg = dict(
    rpn=dict(
        assigner=dict(
            type='MaxIoUAssigner',
            pos_iou_thr=0.7,
            neg_iou_thr=0.3,
            min_pos_iou=0.3,
            ignore_iof_thr=-1),
        sampler=dict(
            type='RandomSampler',
            num=256,
            pos_fraction=0.5,
            neg_pos_ub=-1,
            add_gt_as_proposals=False),
        allowed_border=0,
        pos_weight=-1,
        debug=False),
124
125
126
127
128
129
130
    rpn_proposal=dict(
        nms_across_levels=False,
        nms_pre=2000,
        nms_post=2000,
        max_num=2000,
        nms_thr=0.7,
        min_bbox_size=0),
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    rcnn=[
        dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.5,
                neg_iou_thr=0.5,
                min_pos_iou=0.5,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
                add_gt_as_proposals=True),
            mask_size=28,
            pos_weight=-1,
            debug=False),
        dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.6,
                neg_iou_thr=0.6,
                min_pos_iou=0.6,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
                add_gt_as_proposals=True),
            mask_size=28,
            pos_weight=-1,
            debug=False),
        dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.7,
                neg_iou_thr=0.7,
                min_pos_iou=0.7,
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
                add_gt_as_proposals=True),
            mask_size=28,
            pos_weight=-1,
            debug=False)
    ],
    stage_loss_weights=[1, 0.5, 0.25])
test_cfg = dict(
    rpn=dict(
        nms_across_levels=False,
185
186
187
        nms_pre=1000,
        nms_post=1000,
        max_num=1000,
188
189
190
191
192
193
        nms_thr=0.7,
        min_bbox_size=0),
    rcnn=dict(
        score_thr=0.001,
        nms=dict(type='nms', iou_thr=0.5),
        max_per_img=100,
194
        mask_thr_binary=0.5))
195
196
197
198
199
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='SegResizeFlipPadRescale', scale_factor=1 / 8),
    dict(type='DefaultFormatBundle'),
    dict(
        type='Collect',
        keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip', flip_ratio=0.5),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
229
230
231
232
233
234
235
236
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        seg_prefix=data_root + 'stuffthingmaps/train2017/',
237
        pipeline=train_pipeline),
238
239
240
241
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
242
        pipeline=test_pipeline),
243
244
245
246
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
247
        pipeline=test_pipeline))
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
    step=[16, 19])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
total_epochs = 20
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/htc_r50_fpn_20e'
load_from = None
resume_from = None
workflow = [('train', 1)]