roi_align.py 1.79 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
from torch.autograd import Function
2
from torch.nn.modules.utils import _pair
Kai Chen's avatar
Kai Chen committed
3
4
5
6
7
8
9
10

from .. import roi_align_cuda


class RoIAlignFunction(Function):

    @staticmethod
    def forward(ctx, features, rois, out_size, spatial_scale, sample_num=0):
11
12
        out_h, out_w = _pair(out_size)
        assert isinstance(out_h, int) and isinstance(out_w, int)
Kai Chen's avatar
Kai Chen committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
        ctx.spatial_scale = spatial_scale
        ctx.sample_num = sample_num
        ctx.save_for_backward(rois)
        ctx.feature_size = features.size()

        batch_size, num_channels, data_height, data_width = features.size()
        num_rois = rois.size(0)

        output = features.new_zeros(num_rois, num_channels, out_h, out_w)
        if features.is_cuda:
            roi_align_cuda.forward(features, rois, out_h, out_w, spatial_scale,
                                   sample_num, output)
        else:
            raise NotImplementedError

        return output

    @staticmethod
    def backward(ctx, grad_output):
        feature_size = ctx.feature_size
        spatial_scale = ctx.spatial_scale
        sample_num = ctx.sample_num
        rois = ctx.saved_tensors[0]
        assert (feature_size is not None and grad_output.is_cuda)

        batch_size, num_channels, data_height, data_width = feature_size
        out_w = grad_output.size(3)
        out_h = grad_output.size(2)

        grad_input = grad_rois = None
        if ctx.needs_input_grad[0]:
Kai Chen's avatar
Kai Chen committed
44
45
46
47
48
            grad_input = rois.new_zeros(batch_size, num_channels, data_height,
                                        data_width)
            roi_align_cuda.backward(grad_output.contiguous(), rois, out_h,
                                    out_w, spatial_scale, sample_num,
                                    grad_input)
Kai Chen's avatar
Kai Chen committed
49
50
51
52
53

        return grad_input, grad_rois, None, None, None


roi_align = RoIAlignFunction.apply