ghm_loss.py 6.01 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import torch
import torch.nn as nn
import torch.nn.functional as F

from ..registry import LOSSES


def _expand_binary_labels(labels, label_weights, label_channels):
    bin_labels = labels.new_full((labels.size(0), label_channels), 0)
    inds = torch.nonzero(labels >= 1).squeeze()
    if inds.numel() > 0:
        bin_labels[inds, labels[inds] - 1] = 1
    bin_label_weights = label_weights.view(-1, 1).expand(
        label_weights.size(0), label_channels)
    return bin_labels, bin_label_weights


18
# TODO: code refactoring to make it consistent with other losses
19
20
21
22
23
24
25
26
27
28
29
30
31
32
@LOSSES.register_module
class GHMC(nn.Module):
    """GHM Classification Loss.

    Details of the theorem can be viewed in the paper
    "Gradient Harmonized Single-stage Detector".
    https://arxiv.org/abs/1811.05181

    Args:
        bins (int): Number of the unit regions for distribution calculation.
        momentum (float): The parameter for moving average.
        use_sigmoid (bool): Can only be true for BCE based loss now.
        loss_weight (float): The weight of the total GHM-C loss.
    """
Kai Chen's avatar
Kai Chen committed
33
34

    def __init__(self, bins=10, momentum=0, use_sigmoid=True, loss_weight=1.0):
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        super(GHMC, self).__init__()
        self.bins = bins
        self.momentum = momentum
        self.edges = torch.arange(bins + 1).float().cuda() / bins
        self.edges[-1] += 1e-6
        if momentum > 0:
            self.acc_sum = torch.zeros(bins).cuda()
        self.use_sigmoid = use_sigmoid
        if not self.use_sigmoid:
            raise NotImplementedError
        self.loss_weight = loss_weight

    def forward(self, pred, target, label_weight, *args, **kwargs):
        """Calculate the GHM-C loss.

        Args:
            pred (float tensor of size [batch_num, class_num]):
                The direct prediction of classification fc layer.
            target (float tensor of size [batch_num, class_num]):
                Binary class target for each sample.
            label_weight (float tensor of size [batch_num, class_num]):
                the value is 1 if the sample is valid and 0 if ignored.
        Returns:
            The gradient harmonized loss.
        """
        # the target should be binary class label
        if pred.dim() != target.dim():
            target, label_weight = _expand_binary_labels(
Kai Chen's avatar
Kai Chen committed
63
                target, label_weight, pred.size(-1))
64
65
66
67
68
69
70
71
72
73
74
75
        target, label_weight = target.float(), label_weight.float()
        edges = self.edges
        mmt = self.momentum
        weights = torch.zeros_like(pred)

        # gradient length
        g = torch.abs(pred.sigmoid().detach() - target)

        valid = label_weight > 0
        tot = max(valid.float().sum().item(), 1.0)
        n = 0  # n valid bins
        for i in range(self.bins):
Kai Chen's avatar
Kai Chen committed
76
            inds = (g >= edges[i]) & (g < edges[i + 1]) & valid
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
            num_in_bin = inds.sum().item()
            if num_in_bin > 0:
                if mmt > 0:
                    self.acc_sum[i] = mmt * self.acc_sum[i] \
                        + (1 - mmt) * num_in_bin
                    weights[inds] = tot / self.acc_sum[i]
                else:
                    weights[inds] = tot / num_in_bin
                n += 1
        if n > 0:
            weights = weights / n

        loss = F.binary_cross_entropy_with_logits(
            pred, target, weights, reduction='sum') / tot
        return loss * self.loss_weight


94
# TODO: code refactoring to make it consistent with other losses
95
96
97
98
99
100
101
102
103
104
105
106
107
108
@LOSSES.register_module
class GHMR(nn.Module):
    """GHM Regression Loss.

    Details of the theorem can be viewed in the paper
    "Gradient Harmonized Single-stage Detector"
    https://arxiv.org/abs/1811.05181

    Args:
        mu (float): The parameter for the Authentic Smooth L1 loss.
        bins (int): Number of the unit regions for distribution calculation.
        momentum (float): The parameter for moving average.
        loss_weight (float): The weight of the total GHM-R loss.
    """
Kai Chen's avatar
Kai Chen committed
109
110

    def __init__(self, mu=0.02, bins=10, momentum=0, loss_weight=1.0):
111
112
113
114
115
116
117
118
119
120
        super(GHMR, self).__init__()
        self.mu = mu
        self.bins = bins
        self.edges = torch.arange(bins + 1).float().cuda() / bins
        self.edges[-1] = 1e3
        self.momentum = momentum
        if momentum > 0:
            self.acc_sum = torch.zeros(bins).cuda()
        self.loss_weight = loss_weight

121
    # TODO: support reduction parameter
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    def forward(self, pred, target, label_weight, avg_factor=None):
        """Calculate the GHM-R loss.

        Args:
            pred (float tensor of size [batch_num, 4 (* class_num)]):
                The prediction of box regression layer. Channel number can be 4
                or 4 * class_num depending on whether it is class-agnostic.
            target (float tensor of size [batch_num, 4 (* class_num)]):
                The target regression values with the same size of pred.
            label_weight (float tensor of size [batch_num, 4 (* class_num)]):
                The weight of each sample, 0 if ignored.
        Returns:
            The gradient harmonized loss.
        """
        mu = self.mu
        edges = self.edges
        mmt = self.momentum

        # ASL1 loss
        diff = pred - target
        loss = torch.sqrt(diff * diff + mu * mu) - mu

        # gradient length
        g = torch.abs(diff / torch.sqrt(mu * mu + diff * diff)).detach()
        weights = torch.zeros_like(g)

        valid = label_weight > 0
        tot = max(label_weight.float().sum().item(), 1.0)
        n = 0  # n: valid bins
        for i in range(self.bins):
Kai Chen's avatar
Kai Chen committed
152
            inds = (g >= edges[i]) & (g < edges[i + 1]) & valid
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
            num_in_bin = inds.sum().item()
            if num_in_bin > 0:
                n += 1
                if mmt > 0:
                    self.acc_sum[i] = mmt * self.acc_sum[i] \
                        + (1 - mmt) * num_in_bin
                    weights[inds] = tot / self.acc_sum[i]
                else:
                    weights[inds] = tot / num_in_bin
        if n > 0:
            weights /= n

        loss = loss * weights
        loss = loss.sum() / tot
        return loss * self.loss_weight