test_ins_vis.py 10.7 KB
Newer Older
WXinlong's avatar
WXinlong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import argparse
import os
import os.path as osp
import shutil
import tempfile
from scipy import ndimage
import mmcv
import torch
import torch.distributed as dist
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import init_dist, get_dist_info, load_checkpoint

from mmdet.core import coco_eval, results2json, wrap_fp16_model, tensor2imgs, get_classes
from mmdet.datasets import build_dataloader, build_dataset
from mmdet.models import build_detector
import cv2

import numpy as np
import matplotlib.cm as cm

def vis_seg(data, result, img_norm_cfg, data_id, colors, score_thr, save_dir):
    img_tensor = data['img'][0]
    img_metas = data['img_meta'][0].data[0]
    imgs = tensor2imgs(img_tensor, **img_norm_cfg)
    assert len(imgs) == len(img_metas)
    class_names = get_classes('coco')

    for img, img_meta, cur_result in zip(imgs, img_metas, result):
        if cur_result is None:
            continue
        h, w, _ = img_meta['img_shape']
        img_show = img[:h, :w, :]
        
        seg_label = cur_result[0]
        seg_label = seg_label.cpu().numpy().astype(np.uint8)
        cate_label = cur_result[1]
        cate_label = cate_label.cpu().numpy()
        score = cur_result[2].cpu().numpy()

        vis_inds = score > score_thr
        seg_label = seg_label[vis_inds]
        num_mask = seg_label.shape[0]
        cate_label = cate_label[vis_inds]
        cate_score = score[vis_inds]

        mask_density = []
        for idx in range(num_mask):
            cur_mask = seg_label[idx, :, :]
            cur_mask = mmcv.imresize(cur_mask, (w, h))
            cur_mask = (cur_mask > 0.5).astype(np.int32)
            mask_density.append(cur_mask.sum())
        orders = np.argsort(mask_density)
        seg_label = seg_label[orders]
        cate_label = cate_label[orders]
        cate_score = cate_score[orders]

        seg_show = img_show.copy()
        for idx in range(num_mask):
            idx = -(idx+1)
            cur_mask = seg_label[idx, :,:]
            cur_mask = mmcv.imresize(cur_mask, (w, h))
            cur_mask = (cur_mask > 0.5).astype(np.uint8)
            if cur_mask.sum() == 0:
               continue
            color_mask = np.random.randint(
                0, 256, (1, 3), dtype=np.uint8)
            cur_mask_bool = cur_mask.astype(np.bool)
            seg_show[cur_mask_bool] = img_show[cur_mask_bool] * 0.5 + color_mask * 0.5

            cur_cate = cate_label[idx]
            cur_score = cate_score[idx]

            label_text = class_names[cur_cate]
            #label_text += '|{:.02f}'.format(cur_score)
            # center
            center_y, center_x = ndimage.measurements.center_of_mass(cur_mask)
            vis_pos = (max(int(center_x) - 10, 0), int(center_y))
            cv2.putText(seg_show, label_text, vis_pos,
                        cv2.FONT_HERSHEY_COMPLEX, 0.3, (255, 255, 255))  # green
        mmcv.imwrite(seg_show, '{}/{}.jpg'.format(save_dir, data_id))


def single_gpu_test(model, data_loader, args, cfg=None, verbose=True):
    model.eval()
    results = []
    dataset = data_loader.dataset

    class_num = 1000 # ins
    colors = [(np.random.random((1, 3)) * 255).tolist()[0] for i in range(class_num)]    

    prog_bar = mmcv.ProgressBar(len(dataset))
    for i, data in enumerate(data_loader):
        with torch.no_grad():
            seg_result = model(return_loss=False, rescale=True, **data)
            result = None
        results.append(result)

        if verbose:
            vis_seg(data, seg_result, cfg.img_norm_cfg, data_id=i, colors=colors, score_thr=args.score_thr, save_dir=args.save_dir)

        batch_size = data['img'][0].size(0)
        for _ in range(batch_size):
            prog_bar.update()
    return results


def multi_gpu_test(model, data_loader, tmpdir=None):
    model.eval()
    results = []
    dataset = data_loader.dataset
    rank, world_size = get_dist_info()
    if rank == 0:
        prog_bar = mmcv.ProgressBar(len(dataset))
    for i, data in enumerate(data_loader):
        with torch.no_grad():
            result = model(return_loss=False, rescale=True, **data)
        results.append(result)

        if rank == 0:
            batch_size = data['img'][0].size(0)
            for _ in range(batch_size * world_size):
                prog_bar.update()

    # collect results from all ranks
    results = collect_results(results, len(dataset), tmpdir)

    return results


def collect_results(result_part, size, tmpdir=None):
    rank, world_size = get_dist_info()
    # create a tmp dir if it is not specified
    if tmpdir is None:
        MAX_LEN = 512
        # 32 is whitespace
        dir_tensor = torch.full((MAX_LEN, ),
                                32,
                                dtype=torch.uint8,
                                device='cuda')
        if rank == 0:
            tmpdir = tempfile.mkdtemp()
            tmpdir = torch.tensor(
                bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
            dir_tensor[:len(tmpdir)] = tmpdir
        dist.broadcast(dir_tensor, 0)
        tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
    else:
        mmcv.mkdir_or_exist(tmpdir)
    # dump the part result to the dir
    mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank)))
    dist.barrier()
    # collect all parts
    if rank != 0:
        return None
    else:
        # load results of all parts from tmp dir
        part_list = []
        for i in range(world_size):
            part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i))
            part_list.append(mmcv.load(part_file))
        # sort the results
        ordered_results = []
        for res in zip(*part_list):
            ordered_results.extend(list(res))
        # the dataloader may pad some samples
        ordered_results = ordered_results[:size]
        # remove tmp dir
        shutil.rmtree(tmpdir)
        return ordered_results


def parse_args():
    parser = argparse.ArgumentParser(description='MMDet test detector')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('checkpoint', help='checkpoint file')
    parser.add_argument('--out', help='output result file')
    parser.add_argument(
        '--json_out',
        help='output result file name without extension',
        type=str)
    parser.add_argument(
        '--eval',
        type=str,
        nargs='+',
        choices=['proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'],
        help='eval types')
    parser.add_argument('--show', action='store_true', help='show results')
    parser.add_argument('--score_thr', type=float, default=0.3, help='score threshold for visualization')
    parser.add_argument('--tmpdir', help='tmp dir for writing some results')
    parser.add_argument('--save_dir', help='dir for saveing visualized images')
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)
    return args


def main():
    args = parse_args()

    assert args.out or args.show or args.json_out, \
        ('Please specify at least one operation (save or show the results) '
         'with the argument "--out" or "--show" or "--json_out"')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    if args.json_out is not None and args.json_out.endswith('.json'):
        args.json_out = args.json_out[:-5]

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(
        dataset,
        imgs_per_gpu=1,
        workers_per_gpu=cfg.data.workers_per_gpu,
        dist=distributed,
        shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    assert not distributed
    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader, args, cfg=cfg)
    else:
        model = MMDistributedDataParallel(model.cuda())
        outputs = multi_gpu_test(model, data_loader, args.tmpdir)

    rank, _ = get_dist_info()
    if args.out and rank == 0:
        print('\nwriting results to {}'.format(args.out))
        mmcv.dump(outputs, args.out)
        eval_types = args.eval
        if eval_types:
            print('Starting evaluate {}'.format(' and '.join(eval_types)))
            if eval_types == ['proposal_fast']:
                result_file = args.out
                coco_eval(result_file, eval_types, dataset.coco)
            else:
                if not isinstance(outputs[0], dict):
                    result_files = results2json(dataset, outputs, args.out)
                    coco_eval(result_files, eval_types, dataset.coco)
                else:
                    for name in outputs[0]:
                        print('\nEvaluating {}'.format(name))
                        outputs_ = [out[name] for out in outputs]
                        result_file = args.out + '.{}'.format(name)
                        result_files = results2json(dataset, outputs_,
                                                    result_file)
                        coco_eval(result_files, eval_types, dataset.coco)

    # Save predictions in the COCO json format
    if args.json_out and rank == 0:
        if not isinstance(outputs[0], dict):
            results2json(dataset, outputs, args.json_out)
        else:
            for name in outputs[0]:
                outputs_ = [out[name] for out in outputs]
                result_file = args.json_out + '.{}'.format(name)
                results2json(dataset, outputs_, result_file)


if __name__ == '__main__':
    main()