voc.py 2.92 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import os.path as osp
import xml.etree.ElementTree as ET

import mmcv
import numpy as np

from .custom import CustomDataset


class VOCDataset(CustomDataset):

    CLASSES = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car',
               'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse',
               'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train',
               'tvmonitor')

    def __init__(self, **kwargs):
        assert not kwargs.get('with_mask', False)
        super(VOCDataset, self).__init__(**kwargs)
        self.cat2label = {cat: i + 1 for i, cat in enumerate(self.CLASSES)}

    def load_annotations(self, ann_file):
Kai Chen's avatar
Kai Chen committed
23
        img_infos = []
Kai Chen's avatar
Kai Chen committed
24
25
26
27
28
29
30
31
32
33
        img_ids = mmcv.list_from_file(ann_file)
        for img_id in img_ids:
            filename = 'JPEGImages/{}.jpg'.format(img_id)
            xml_path = osp.join(self.img_prefix, 'Annotations',
                                '{}.xml'.format(img_id))
            tree = ET.parse(xml_path)
            root = tree.getroot()
            size = root.find('size')
            width = int(size.find('width').text)
            height = int(size.find('height').text)
Kai Chen's avatar
Kai Chen committed
34
            img_infos.append(
Kai Chen's avatar
Kai Chen committed
35
                dict(id=img_id, filename=filename, width=width, height=height))
Kai Chen's avatar
Kai Chen committed
36
        return img_infos
Kai Chen's avatar
Kai Chen committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

    def get_ann_info(self, idx):
        img_id = self.img_infos[idx]['id']
        xml_path = osp.join(self.img_prefix, 'Annotations',
                            '{}.xml'.format(img_id))
        tree = ET.parse(xml_path)
        root = tree.getroot()
        bboxes = []
        labels = []
        bboxes_ignore = []
        labels_ignore = []
        for obj in root.findall('object'):
            name = obj.find('name').text
            label = self.cat2label[name]
            difficult = int(obj.find('difficult').text)
            bnd_box = obj.find('bndbox')
            bbox = [
                int(bnd_box.find('xmin').text),
                int(bnd_box.find('ymin').text),
                int(bnd_box.find('xmax').text),
                int(bnd_box.find('ymax').text)
            ]
            if difficult:
                bboxes_ignore.append(bbox)
                labels_ignore.append(label)
            else:
                bboxes.append(bbox)
                labels.append(label)
        if not bboxes:
            bboxes = np.zeros((0, 4))
            labels = np.zeros((0, ))
        else:
            bboxes = np.array(bboxes, ndmin=2) - 1
            labels = np.array(labels)
        if not bboxes_ignore:
            bboxes_ignore = np.zeros((0, 4))
            labels_ignore = np.zeros((0, ))
        else:
            bboxes_ignore = np.array(bboxes_ignore, ndmin=2) - 1
            labels_ignore = np.array(labels_ignore)
        ann = dict(
            bboxes=bboxes.astype(np.float32),
            labels=labels.astype(np.int64),
            bboxes_ignore=bboxes_ignore.astype(np.float32),
            labels_ignore=labels_ignore.astype(np.int64))
        return ann