nms_kernel.cu 6.95 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// ------------------------------------------------------------------
// Faster R-CNN
// Copyright (c) 2015 Microsoft
// Licensed under The MIT License [see fast-rcnn/LICENSE for details]
// Written by Shaoqing Ren
// ------------------------------------------------------------------

#include <stdio.h>
#include <iostream>
#include <vector>
#include "gpu_nms.hpp"

#define CUDA_CHECK(condition)                                    \
    /* Code block avoids redefinition of cudaError_t error */    \
    do {                                                         \
        cudaError_t error = condition;                           \
        if (error != cudaSuccess) {                              \
            std::cout << cudaGetErrorString(error) << std::endl; \
        }                                                        \
    } while (0)

#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
#define MULTIPLIER 16
#define LONGLONG_SIZE 64

int const threadsPerBlock =
    sizeof(unsigned long long) * 8 *
    MULTIPLIER;  // number of bits for a long long variable

__device__ inline float devIoU(float const* const a, float const* const b) {
    float left = max(a[0], b[0]), right = min(a[2], b[2]);
    float top = max(a[1], b[1]), bottom = min(a[3], b[3]);
    float width = max(right - left + 1, 0.f),
          height = max(bottom - top + 1, 0.f);
    float interS = width * height;
    float Sa = (a[2] - a[0] + 1) * (a[3] - a[1] + 1);
    float Sb = (b[2] - b[0] + 1) * (b[3] - b[1] + 1);
    return interS / (Sa + Sb - interS);
}

__global__ void nms_kernel(const int n_boxes, const float nms_overlap_thresh,
                           const float* dev_boxes,
                           unsigned long long* dev_mask) {
    const int row_start = blockIdx.y;
    const int col_start = blockIdx.x;

    // if (row_start > col_start) return;

    const int row_size =
        min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
    const int col_size =
        min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);

    __shared__ float block_boxes[threadsPerBlock * 5];
    if (threadIdx.x < col_size) {
        block_boxes[threadIdx.x * 5 + 0] =
            dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 0];
        block_boxes[threadIdx.x * 5 + 1] =
            dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 1];
        block_boxes[threadIdx.x * 5 + 2] =
            dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 2];
        block_boxes[threadIdx.x * 5 + 3] =
            dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 3];
        block_boxes[threadIdx.x * 5 + 4] =
            dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4];
    }
    __syncthreads();

    unsigned long long ts[MULTIPLIER];

    if (threadIdx.x < row_size) {
#pragma unroll
        for (int i = 0; i < MULTIPLIER; ++i) {
            ts[i] = 0;
        }
        const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
        const float* cur_box = dev_boxes + cur_box_idx * 5;
        int i = 0;
        int start = 0;
        if (row_start == col_start) {
            start = threadIdx.x + 1;
        }
        for (i = start; i < col_size; i++) {
            if (devIoU(cur_box, block_boxes + i * 5) > nms_overlap_thresh) {
                ts[i / LONGLONG_SIZE] |= 1ULL << (i % LONGLONG_SIZE);
            }
        }
        const int col_blocks = DIVUP(n_boxes, threadsPerBlock);

#pragma unroll
        for (int i = 0; i < MULTIPLIER; ++i) {
            dev_mask[(cur_box_idx * col_blocks + col_start) * MULTIPLIER + i] =
                ts[i];
        }
    }
}

void _set_device(int device_id) {
    int current_device;
    CUDA_CHECK(cudaGetDevice(&current_device));
    if (current_device == device_id) {
        return;
    }
    // The call to cudaSetDevice must come before any calls to Get, which
    // may perform initialization using the GPU.
    CUDA_CHECK(cudaSetDevice(device_id));
}

const size_t MEMORY_SIZE = 500000000;
size_t nms_Malloc() {
    float* boxes_dev = NULL;
    CUDA_CHECK(cudaMalloc(&boxes_dev, MEMORY_SIZE));
    return size_t(boxes_dev);
}

void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num,
          int boxes_dim, float nms_overlap_thresh, int device_id, size_t base) {
    _set_device(device_id);

    float* boxes_dev = NULL;
    unsigned long long* mask_dev = NULL;

    const int col_blocks = DIVUP(boxes_num, threadsPerBlock);

    if (base > 0) {
        size_t require_mem =
            boxes_num * boxes_dim * sizeof(float) +
            boxes_num * col_blocks * sizeof(unsigned long long) * MULTIPLIER;
        if (require_mem >= MEMORY_SIZE) {
            std::cout << "require_mem: " << require_mem << std::endl;
        }
        boxes_dev = (float*)(base);
        mask_dev =
            (unsigned long long*)(base +
                                  512 * ((unsigned long long)(boxes_num *
                                                              boxes_dim *
                                                              sizeof(float) /
                                                              512) +
                                         1));
    } else {
        CUDA_CHECK(
            cudaMalloc(&boxes_dev, boxes_num * boxes_dim * sizeof(float)));
        CUDA_CHECK(cudaMalloc(&mask_dev, MULTIPLIER * boxes_num * col_blocks *
                                             sizeof(unsigned long long)));
    }
    CUDA_CHECK(cudaMemcpy(boxes_dev, boxes_host,
                          boxes_num * boxes_dim * sizeof(float),
                          cudaMemcpyHostToDevice));

    dim3 blocks(DIVUP(boxes_num, threadsPerBlock),
                DIVUP(boxes_num, threadsPerBlock));
    dim3 threads(threadsPerBlock);
    nms_kernel<<<blocks, threads>>>(boxes_num, nms_overlap_thresh, boxes_dev,
                                    mask_dev);

    std::vector<unsigned long long> mask_host(boxes_num * col_blocks *
                                              MULTIPLIER);
    CUDA_CHECK(cudaMemcpy(
        &mask_host[0], mask_dev,
        sizeof(unsigned long long) * boxes_num * col_blocks * MULTIPLIER,
        cudaMemcpyDeviceToHost));

    std::vector<unsigned long long> remv(col_blocks * MULTIPLIER);
    memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks * MULTIPLIER);

    int num_to_keep = 0;
    for (int i = 0; i < boxes_num; i++) {
        int nblock = i / threadsPerBlock;
        int inblock = i % threadsPerBlock;
        int offset = inblock / LONGLONG_SIZE;
        int bit_pos = inblock % LONGLONG_SIZE;

        if (!(remv[nblock * MULTIPLIER + offset] & (1ULL << bit_pos))) {
            keep_out[num_to_keep++] = i;
            unsigned long long* p = &mask_host[0] + i * col_blocks * MULTIPLIER;
            for (int j = nblock * MULTIPLIER + offset;
                 j < col_blocks * MULTIPLIER; j++) {
                remv[j] |= p[j];
            }
        }
    }
    *num_out = num_to_keep;

    if (!base) {
        CUDA_CHECK(cudaFree(boxes_dev));
        CUDA_CHECK(cudaFree(mask_dev));
    }
}