rpn_r50_fpn_1x.py 3.78 KB
Newer Older
pangjm's avatar
pangjm committed
1
2
# model settings
model = dict(
Kai Chen's avatar
Kai Chen committed
3
    type='RPN',
4
    pretrained='torchvision://resnet50',
pangjm's avatar
pangjm committed
5
    backbone=dict(
Kai Chen's avatar
Kai Chen committed
6
        type='ResNet',
pangjm's avatar
pangjm committed
7
8
9
10
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
11
        style='pytorch'),
pangjm's avatar
pangjm committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    rpn_head=dict(
        type='RPNHead',
        in_channels=256,
        feat_channels=256,
        anchor_scales=[8],
        anchor_ratios=[0.5, 1.0, 2.0],
        anchor_strides=[4, 8, 16, 32, 64],
        target_means=[.0, .0, .0, .0],
        target_stds=[1.0, 1.0, 1.0, 1.0],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
26
27
28
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)))
Kai Chen's avatar
Kai Chen committed
29
30
31
# model training and testing settings
train_cfg = dict(
    rpn=dict(
Kai Chen's avatar
Kai Chen committed
32
        assigner=dict(
33
            type='MaxIoUAssigner',
Kai Chen's avatar
Kai Chen committed
34
35
36
37
38
            pos_iou_thr=0.7,
            neg_iou_thr=0.3,
            min_pos_iou=0.3,
            ignore_iof_thr=-1),
        sampler=dict(
39
            type='RandomSampler',
Kai Chen's avatar
Kai Chen committed
40
41
42
            num=256,
            pos_fraction=0.5,
            neg_pos_ub=-1,
43
            add_gt_as_proposals=False),
pangjm's avatar
pangjm committed
44
45
        allowed_border=0,
        pos_weight=-1,
Kai Chen's avatar
Kai Chen committed
46
47
48
        debug=False))
test_cfg = dict(
    rpn=dict(
pangjm's avatar
pangjm committed
49
50
51
52
53
54
55
        nms_across_levels=False,
        nms_pre=2000,
        nms_post=2000,
        max_num=2000,
        nms_thr=0.7,
        min_bbox_size=0))
# dataset settings
Kai Chen's avatar
Kai Chen committed
56
dataset_type = 'CocoDataset'
Kai Chen's avatar
Kai Chen committed
57
data_root = 'data/coco/'
pangjm's avatar
pangjm committed
58
59
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True, with_label=False),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
Kai Chen's avatar
Kai Chen committed
85
86
87
88
89
90
91
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
92
        pipeline=train_pipeline),
Kai Chen's avatar
Kai Chen committed
93
    val=dict(
Kai Chen's avatar
Kai Chen committed
94
95
96
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
97
        pipeline=test_pipeline),
Kai Chen's avatar
Kai Chen committed
98
99
100
101
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
102
        pipeline=test_pipeline))
pangjm's avatar
pangjm committed
103
104
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
Kai Chen's avatar
Kai Chen committed
105
106
107
# runner configs
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
lr_config = dict(
pangjm's avatar
pangjm committed
108
109
110
    policy='step',
    warmup='linear',
    warmup_iters=500,
Kai Chen's avatar
Kai Chen committed
111
    warmup_ratio=1.0 / 3,
pangjm's avatar
pangjm committed
112
113
114
115
116
117
118
    step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
Kai Chen's avatar
Kai Chen committed
119
        # dict(type='TensorboardLoggerHook')
pangjm's avatar
pangjm committed
120
121
    ])
# yapf:enable
Kai Chen's avatar
Kai Chen committed
122
123
# runtime settings
total_epochs = 12
124
dist_params = dict(backend='nccl')
Kai Chen's avatar
Kai Chen committed
125
log_level = 'INFO'
Kai Chen's avatar
Kai Chen committed
126
work_dir = './work_dirs/rpn_r50_fpn_1x'
pangjm's avatar
pangjm committed
127
load_from = None
Kai Chen's avatar
Kai Chen committed
128
resume_from = None
129
workflow = [('train', 1)]