cascade_rcnn_r50_fpn_1x.py 7.2 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
# model settings
model = dict(
    type='CascadeRCNN',
    num_stages=3,
5
    pretrained='torchvision://resnet50',
Kai Chen's avatar
Kai Chen committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        style='pytorch'),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    rpn_head=dict(
        type='RPNHead',
        in_channels=256,
        feat_channels=256,
        anchor_scales=[8],
        anchor_ratios=[0.5, 1.0, 2.0],
        anchor_strides=[4, 8, 16, 32, 64],
        target_means=[.0, .0, .0, .0],
        target_stds=[1.0, 1.0, 1.0, 1.0],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
27
28
29
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
Kai Chen's avatar
Kai Chen committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    bbox_roi_extractor=dict(
        type='SingleRoIExtractor',
        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
        out_channels=256,
        featmap_strides=[4, 8, 16, 32]),
    bbox_head=[
        dict(
            type='SharedFCBBoxHead',
            num_fcs=2,
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=81,
            target_means=[0., 0., 0., 0.],
            target_stds=[0.1, 0.1, 0.2, 0.2],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
45
46
            reg_class_agnostic=True,
            loss_cls=dict(
47
48
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
Kai Chen's avatar
Kai Chen committed
49
50
51
52
53
54
55
56
57
        dict(
            type='SharedFCBBoxHead',
            num_fcs=2,
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=81,
            target_means=[0., 0., 0., 0.],
            target_stds=[0.05, 0.05, 0.1, 0.1],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
58
59
            reg_class_agnostic=True,
            loss_cls=dict(
60
61
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
Kai Chen's avatar
Kai Chen committed
62
63
64
65
66
67
68
69
70
        dict(
            type='SharedFCBBoxHead',
            num_fcs=2,
            in_channels=256,
            fc_out_channels=1024,
            roi_feat_size=7,
            num_classes=81,
            target_means=[0., 0., 0., 0.],
            target_stds=[0.033, 0.033, 0.067, 0.067],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
71
72
            reg_class_agnostic=True,
            loss_cls=dict(
73
74
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
            loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
Kai Chen's avatar
Kai Chen committed
75
76
77
78
79
    ])
# model training and testing settings
train_cfg = dict(
    rpn=dict(
        assigner=dict(
80
            type='MaxIoUAssigner',
Kai Chen's avatar
Kai Chen committed
81
82
83
84
85
            pos_iou_thr=0.7,
            neg_iou_thr=0.3,
            min_pos_iou=0.3,
            ignore_iof_thr=-1),
        sampler=dict(
86
            type='RandomSampler',
Kai Chen's avatar
Kai Chen committed
87
88
89
            num=256,
            pos_fraction=0.5,
            neg_pos_ub=-1,
90
            add_gt_as_proposals=False),
Kai Chen's avatar
Kai Chen committed
91
92
93
        allowed_border=0,
        pos_weight=-1,
        debug=False),
94
95
96
97
98
99
100
    rpn_proposal=dict(
        nms_across_levels=False,
        nms_pre=2000,
        nms_post=2000,
        max_num=2000,
        nms_thr=0.7,
        min_bbox_size=0),
Kai Chen's avatar
Kai Chen committed
101
102
103
    rcnn=[
        dict(
            assigner=dict(
104
                type='MaxIoUAssigner',
Kai Chen's avatar
Kai Chen committed
105
106
107
108
109
                pos_iou_thr=0.5,
                neg_iou_thr=0.5,
                min_pos_iou=0.5,
                ignore_iof_thr=-1),
            sampler=dict(
110
                type='RandomSampler',
Kai Chen's avatar
Kai Chen committed
111
112
113
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
114
                add_gt_as_proposals=True),
Kai Chen's avatar
Kai Chen committed
115
116
117
118
            pos_weight=-1,
            debug=False),
        dict(
            assigner=dict(
119
                type='MaxIoUAssigner',
Kai Chen's avatar
Kai Chen committed
120
121
122
123
124
                pos_iou_thr=0.6,
                neg_iou_thr=0.6,
                min_pos_iou=0.6,
                ignore_iof_thr=-1),
            sampler=dict(
125
                type='RandomSampler',
Kai Chen's avatar
Kai Chen committed
126
127
128
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
129
                add_gt_as_proposals=True),
Kai Chen's avatar
Kai Chen committed
130
131
132
133
            pos_weight=-1,
            debug=False),
        dict(
            assigner=dict(
134
                type='MaxIoUAssigner',
Kai Chen's avatar
Kai Chen committed
135
136
137
138
139
                pos_iou_thr=0.7,
                neg_iou_thr=0.7,
                min_pos_iou=0.7,
                ignore_iof_thr=-1),
            sampler=dict(
140
                type='RandomSampler',
Kai Chen's avatar
Kai Chen committed
141
142
143
                num=512,
                pos_fraction=0.25,
                neg_pos_ub=-1,
144
                add_gt_as_proposals=True),
Kai Chen's avatar
Kai Chen committed
145
146
147
            pos_weight=-1,
            debug=False)
    ],
148
    stage_loss_weights=[1, 0.5, 0.25])
Kai Chen's avatar
Kai Chen committed
149
150
151
test_cfg = dict(
    rpn=dict(
        nms_across_levels=False,
152
153
154
        nms_pre=1000,
        nms_post=1000,
        max_num=1000,
Kai Chen's avatar
Kai Chen committed
155
156
        nms_thr=0.7,
        min_bbox_size=0),
157
158
    rcnn=dict(
        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100),
Kai Chen's avatar
Kai Chen committed
159
160
161
162
163
164
    keep_all_stages=False)
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
Kai Chen's avatar
Kai Chen committed
190
191
192
193
194
195
196
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
197
        pipeline=train_pipeline),
Kai Chen's avatar
Kai Chen committed
198
199
200
201
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
202
        pipeline=test_pipeline),
Kai Chen's avatar
Kai Chen committed
203
204
205
206
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
207
        pipeline=test_pipeline))
Kai Chen's avatar
Kai Chen committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
    step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/cascade_rcnn_r50_fpn_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]