mask_rcnn_r101_fpn_1x.py 5.19 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
# model settings
model = dict(
    type='MaskRCNN',
4
    pretrained='torchvision://resnet101',
Kai Chen's avatar
Kai Chen committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
    backbone=dict(
        type='ResNet',
        depth=101,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        style='pytorch'),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    rpn_head=dict(
        type='RPNHead',
        in_channels=256,
        feat_channels=256,
        anchor_scales=[8],
        anchor_ratios=[0.5, 1.0, 2.0],
        anchor_strides=[4, 8, 16, 32, 64],
        target_means=[.0, .0, .0, .0],
        target_stds=[1.0, 1.0, 1.0, 1.0],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
26
27
28
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
Kai Chen's avatar
Kai Chen committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    bbox_roi_extractor=dict(
        type='SingleRoIExtractor',
        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
        out_channels=256,
        featmap_strides=[4, 8, 16, 32]),
    bbox_head=dict(
        type='SharedFCBBoxHead',
        num_fcs=2,
        in_channels=256,
        fc_out_channels=1024,
        roi_feat_size=7,
        num_classes=81,
        target_means=[0., 0., 0., 0.],
        target_stds=[0.1, 0.1, 0.2, 0.2],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
43
44
45
46
        reg_class_agnostic=False,
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
Kai Chen's avatar
Kai Chen committed
47
48
49
50
51
52
53
54
55
56
    mask_roi_extractor=dict(
        type='SingleRoIExtractor',
        roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
        out_channels=256,
        featmap_strides=[4, 8, 16, 32]),
    mask_head=dict(
        type='FCNMaskHead',
        num_convs=4,
        in_channels=256,
        conv_out_channels=256,
Jiangmiao Pang's avatar
Jiangmiao Pang committed
57
58
59
        num_classes=81,
        loss_mask=dict(
            type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))
Kai Chen's avatar
Kai Chen committed
60
61
62
63
# model training and testing settings
train_cfg = dict(
    rpn=dict(
        assigner=dict(
64
            type='MaxIoUAssigner',
Kai Chen's avatar
Kai Chen committed
65
66
67
68
69
            pos_iou_thr=0.7,
            neg_iou_thr=0.3,
            min_pos_iou=0.3,
            ignore_iof_thr=-1),
        sampler=dict(
70
            type='RandomSampler',
Kai Chen's avatar
Kai Chen committed
71
72
73
            num=256,
            pos_fraction=0.5,
            neg_pos_ub=-1,
74
            add_gt_as_proposals=False),
Kai Chen's avatar
Kai Chen committed
75
76
77
        allowed_border=0,
        pos_weight=-1,
        debug=False),
78
79
80
81
82
83
84
    rpn_proposal=dict(
        nms_across_levels=False,
        nms_pre=2000,
        nms_post=2000,
        max_num=2000,
        nms_thr=0.7,
        min_bbox_size=0),
Kai Chen's avatar
Kai Chen committed
85
86
    rcnn=dict(
        assigner=dict(
87
            type='MaxIoUAssigner',
Kai Chen's avatar
Kai Chen committed
88
89
90
91
92
            pos_iou_thr=0.5,
            neg_iou_thr=0.5,
            min_pos_iou=0.5,
            ignore_iof_thr=-1),
        sampler=dict(
93
            type='RandomSampler',
Kai Chen's avatar
Kai Chen committed
94
95
96
            num=512,
            pos_fraction=0.25,
            neg_pos_ub=-1,
97
            add_gt_as_proposals=True),
Kai Chen's avatar
Kai Chen committed
98
99
100
101
102
103
        mask_size=28,
        pos_weight=-1,
        debug=False))
test_cfg = dict(
    rpn=dict(
        nms_across_levels=False,
104
105
106
        nms_pre=1000,
        nms_post=1000,
        max_num=1000,
Kai Chen's avatar
Kai Chen committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        nms_thr=0.7,
        min_bbox_size=0),
    rcnn=dict(
        score_thr=0.05,
        nms=dict(type='nms', iou_thr=0.5),
        max_per_img=100,
        mask_thr_binary=0.5))
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
        flip_ratio=0.5,
        with_mask=True,
        with_crowd=True,
        with_label=True),
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
        flip_ratio=0,
        with_mask=True,
        with_crowd=True,
        with_label=True),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
        flip_ratio=0,
        with_mask=False,
        with_label=False,
        test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=1.0 / 3,
    step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
# yapf:enable
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/mask_rcnn_r101_fpn_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]