faster_rcnn_r50_fpn_1x.py 4.81 KB
Newer Older
pangjm's avatar
pangjm committed
1
2
# model settings
model = dict(
Kai Chen's avatar
Kai Chen committed
3
    type='FasterRCNN',
4
    pretrained='torchvision://resnet50',
pangjm's avatar
pangjm committed
5
    backbone=dict(
Kai Chen's avatar
Kai Chen committed
6
        type='ResNet',
pangjm's avatar
pangjm committed
7
8
9
10
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
11
        style='pytorch'),
pangjm's avatar
pangjm committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    rpn_head=dict(
        type='RPNHead',
        in_channels=256,
        feat_channels=256,
        anchor_scales=[8],
        anchor_ratios=[0.5, 1.0, 2.0],
        anchor_strides=[4, 8, 16, 32, 64],
        target_means=[.0, .0, .0, .0],
        target_stds=[1.0, 1.0, 1.0, 1.0],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
26
27
28
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
Kai Chen's avatar
Kai Chen committed
29
    bbox_roi_extractor=dict(
30
        type='SingleRoIExtractor',
pangjm's avatar
pangjm committed
31
32
33
34
        roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
        out_channels=256,
        featmap_strides=[4, 8, 16, 32]),
    bbox_head=dict(
Kai Chen's avatar
Kai Chen committed
35
        type='SharedFCBBoxHead',
pangjm's avatar
pangjm committed
36
37
38
39
40
41
42
        num_fcs=2,
        in_channels=256,
        fc_out_channels=1024,
        roi_feat_size=7,
        num_classes=81,
        target_means=[0., 0., 0., 0.],
        target_stds=[0.1, 0.1, 0.2, 0.2],
Jiangmiao Pang's avatar
Jiangmiao Pang committed
43
44
45
46
        reg_class_agnostic=False,
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))
Kai Chen's avatar
Kai Chen committed
47
48
49
# model training and testing settings
train_cfg = dict(
    rpn=dict(
Kai Chen's avatar
Kai Chen committed
50
        assigner=dict(
51
            type='MaxIoUAssigner',
Kai Chen's avatar
Kai Chen committed
52
53
54
55
56
            pos_iou_thr=0.7,
            neg_iou_thr=0.3,
            min_pos_iou=0.3,
            ignore_iof_thr=-1),
        sampler=dict(
57
            type='RandomSampler',
Kai Chen's avatar
Kai Chen committed
58
59
60
            num=256,
            pos_fraction=0.5,
            neg_pos_ub=-1,
61
            add_gt_as_proposals=False),
pangjm's avatar
pangjm committed
62
63
64
        allowed_border=0,
        pos_weight=-1,
        debug=False),
65
66
67
68
69
70
71
    rpn_proposal=dict(
        nms_across_levels=False,
        nms_pre=2000,
        nms_post=2000,
        max_num=2000,
        nms_thr=0.7,
        min_bbox_size=0),
Kai Chen's avatar
Kai Chen committed
72
    rcnn=dict(
Kai Chen's avatar
Kai Chen committed
73
        assigner=dict(
74
            type='MaxIoUAssigner',
Kai Chen's avatar
Kai Chen committed
75
76
77
78
79
            pos_iou_thr=0.5,
            neg_iou_thr=0.5,
            min_pos_iou=0.5,
            ignore_iof_thr=-1),
        sampler=dict(
80
            type='RandomSampler',
Kai Chen's avatar
Kai Chen committed
81
82
83
            num=512,
            pos_fraction=0.25,
            neg_pos_ub=-1,
84
            add_gt_as_proposals=True),
pangjm's avatar
pangjm committed
85
        pos_weight=-1,
Kai Chen's avatar
Kai Chen committed
86
87
88
89
        debug=False))
test_cfg = dict(
    rpn=dict(
        nms_across_levels=False,
90
91
92
        nms_pre=1000,
        nms_post=1000,
        max_num=1000,
Kai Chen's avatar
Kai Chen committed
93
94
        nms_thr=0.7,
        min_bbox_size=0),
95
96
97
98
99
    rcnn=dict(
        score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100)
    # soft-nms is also supported for rcnn testing
    # e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)
pangjm's avatar
pangjm committed
100
# dataset settings
Kai Chen's avatar
Kai Chen committed
101
dataset_type = 'CocoDataset'
Kai Chen's avatar
Kai Chen committed
102
data_root = 'data/coco/'
pangjm's avatar
pangjm committed
103
img_norm_cfg = dict(
Kai Chen's avatar
Kai Chen committed
104
105
106
107
108
109
110
111
112
113
114
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
    imgs_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        img_scale=(1333, 800),
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
115
116
117
        flip_ratio=0.5,
        with_mask=False,
        with_crowd=True,
Kai Chen's avatar
Kai Chen committed
118
119
        with_label=True),
    val=dict(
Kai Chen's avatar
Kai Chen committed
120
121
122
123
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
Kai Chen's avatar
Kai Chen committed
124
125
        img_norm_cfg=img_norm_cfg,
        size_divisor=32,
Kai Chen's avatar
Kai Chen committed
126
        flip_ratio=0,
Kai Chen's avatar
Kai Chen committed
127
128
129
130
131
132
133
134
        with_mask=False,
        with_crowd=True,
        with_label=True),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        img_scale=(1333, 800),
Kai Chen's avatar
Kai Chen committed
135
        img_norm_cfg=img_norm_cfg,
136
        size_divisor=32,
Kai Chen's avatar
Kai Chen committed
137
        flip_ratio=0,
138
139
140
        with_mask=False,
        with_label=False,
        test_mode=True))
pangjm's avatar
pangjm committed
141
142
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
Kai Chen's avatar
Kai Chen committed
143
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
pangjm's avatar
pangjm committed
144
# learning policy
Kai Chen's avatar
Kai Chen committed
145
lr_config = dict(
pangjm's avatar
pangjm committed
146
147
148
    policy='step',
    warmup='linear',
    warmup_iters=500,
Kai Chen's avatar
Kai Chen committed
149
    warmup_ratio=1.0 / 3,
pangjm's avatar
pangjm committed
150
151
152
153
    step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
Kai Chen's avatar
Kai Chen committed
154
    interval=50,
pangjm's avatar
pangjm committed
155
156
    hooks=[
        dict(type='TextLoggerHook'),
Kai Chen's avatar
Kai Chen committed
157
        # dict(type='TensorboardLoggerHook')
pangjm's avatar
pangjm committed
158
159
    ])
# yapf:enable
Kai Chen's avatar
Kai Chen committed
160
161
# runtime settings
total_epochs = 12
162
dist_params = dict(backend='nccl')
Kai Chen's avatar
Kai Chen committed
163
log_level = 'INFO'
Kai Chen's avatar
Kai Chen committed
164
work_dir = './work_dirs/faster_rcnn_r50_fpn_1x'
pangjm's avatar
pangjm committed
165
166
167
load_from = None
resume_from = None
workflow = [('train', 1)]