train.py 5.11 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Code adapted from https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama/scripts/supervised_finetuning.py
# and https://huggingface.co/blog/gemma-peft
import argparse
import multiprocessing
import os

import torch
import transformers
from accelerate import PartialState
from datasets import load_dataset
from peft import AutoPeftModelForCausalLM, LoraConfig
from transformers import (
    AutoModelForCausalLM,
    BitsAndBytesConfig,
    is_torch_npu_available,
    is_torch_xpu_available,
    logging,
    set_seed,
)
from trl import SFTTrainer


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_id", type=str, default="HuggingFaceTB/SmolLM2-1.7B")
    parser.add_argument("--dataset_name", type=str, default="bigcode/the-stack-smol")
    parser.add_argument("--subset", type=str, default="data/python")
    parser.add_argument("--split", type=str, default="train")
    parser.add_argument("--dataset_text_field", type=str, default="content")

    parser.add_argument("--max_seq_length", type=int, default=2048)
    parser.add_argument("--max_steps", type=int, default=1000)
    parser.add_argument("--micro_batch_size", type=int, default=1)
    parser.add_argument("--gradient_accumulation_steps", type=int, default=4)
    parser.add_argument("--weight_decay", type=float, default=0.01)
    parser.add_argument("--bf16", type=bool, default=True)

    parser.add_argument("--use_bnb", type=bool, default=False)
    parser.add_argument("--attention_dropout", type=float, default=0.1)
    parser.add_argument("--learning_rate", type=float, default=2e-4)
    parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
    parser.add_argument("--warmup_steps", type=int, default=100)
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--output_dir", type=str, default="finetune_smollm2_python")
    parser.add_argument("--num_proc", type=int, default=None)
    parser.add_argument("--save_merged_model", type=bool, default=True)
    parser.add_argument("--push_to_hub", type=bool, default=True)
    parser.add_argument("--repo_id", type=str, default="SmolLM2-1.7B-finetune")
    return parser.parse_args()


def main(args):
    # config
    lora_config = LoraConfig(
        r=16,
        lora_alpha=32,
        lora_dropout=0.05,
        target_modules=["q_proj", "v_proj"],
        bias="none",
        task_type="CAUSAL_LM",
    )
    bnb_config = None
    if args.use_bnb:
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16,
        )
    # load model and dataset
    token = os.environ.get("HF_TOKEN", None)
    model = AutoModelForCausalLM.from_pretrained(
        args.model_id,
        quantization_config=bnb_config,
        device_map={"": PartialState().process_index},
        attention_dropout=args.attention_dropout,
    )

    data = load_dataset(
        args.dataset_name,
        data_dir=args.subset,
        split=args.split,
        token=token,
        num_proc=args.num_proc if args.num_proc else multiprocessing.cpu_count(),
    )

    # setup the trainer
    trainer = SFTTrainer(
        model=model,
        train_dataset=data,
        max_seq_length=args.max_seq_length,
        args=transformers.TrainingArguments(
            per_device_train_batch_size=args.micro_batch_size,
            gradient_accumulation_steps=args.gradient_accumulation_steps,
            warmup_steps=args.warmup_steps,
            max_steps=args.max_steps,
            learning_rate=args.learning_rate,
            lr_scheduler_type=args.lr_scheduler_type,
            weight_decay=args.weight_decay,
            bf16=args.bf16,
            logging_strategy="steps",
            logging_steps=10,
            output_dir=args.output_dir,
            optim="paged_adamw_8bit",
            seed=args.seed,
            run_name=f"train-{args.model_id.split('/')[-1]}",
            report_to="wandb",
        ),
        peft_config=lora_config,
        dataset_text_field=args.dataset_text_field,
    )

    # launch
    print("Training...")
    trainer.train()

    print("Saving the last checkpoint of the model")
    model.save_pretrained(os.path.join(args.output_dir, "final_checkpoint/"))

    if args.save_merged_model:
        # Free memory for merging weights
        del model
        if is_torch_xpu_available():
            torch.xpu.empty_cache()
        elif is_torch_npu_available():
            torch.npu.empty_cache()
        else:
            torch.cuda.empty_cache()

        model = AutoPeftModelForCausalLM.from_pretrained(args.output_dir, device_map="auto", torch_dtype=torch.bfloat16)
        model = model.merge_and_unload()

        output_merged_dir = os.path.join(args.output_dir, "final_merged_checkpoint")
        model.save_pretrained(output_merged_dir, safe_serialization=True)

        if args.push_to_hub:
            model.push_to_hub(args.repo_id, "Upload model")
    
    print("Training Done! 💥")


if __name__ == "__main__":
    args = get_args()
    set_seed(args.seed)
    os.makedirs(args.output_dir, exist_ok=True)

    logging.set_verbosity_error()

    main(args)