Commit c3426f6e authored by Sugon_ldc's avatar Sugon_ldc
Browse files

add shufflenetv2 model

parents
2023-06-28 00:37:49.978036 cuda
2023-06-28 00:38:04.069070 Train: epoch: 1 batch: 0/4, loss: 0.693067
2023-06-28 00:38:48.656869 Validation: avg loss: 0.6878, avg acc: 58.0952%
2023-06-28 00:39:02.850143 Train: epoch: 2 batch: 0/4, loss: 0.682373
2023-06-28 00:39:47.570461 Validation: avg loss: 0.6836, avg acc: 58.0952%
2023-06-28 00:40:01.779678 Train: epoch: 3 batch: 0/4, loss: 0.669462
2023-06-28 00:40:46.890763 Validation: avg loss: 0.6835, avg acc: 58.0952%
2023-06-28 00:41:01.120619 Train: epoch: 4 batch: 0/4, loss: 0.668123
2023-06-28 00:41:46.105633 Validation: avg loss: 0.6800, avg acc: 58.0952%
2023-06-28 00:42:00.231917 Train: epoch: 5 batch: 0/4, loss: 0.658780
2023-06-28 00:42:44.757819 Validation: avg loss: 0.6816, avg acc: 58.0952%
2023-06-28 00:42:59.100509 Train: epoch: 6 batch: 0/4, loss: 0.604294
2023-06-28 00:43:43.979090 Validation: avg loss: 0.6818, avg acc: 58.0952%
2023-06-28 00:43:58.482084 Train: epoch: 7 batch: 0/4, loss: 0.574335
2023-06-28 00:44:43.802849 Validation: avg loss: 0.6815, avg acc: 58.0952%
2023-06-28 00:44:58.409313 Train: epoch: 8 batch: 0/4, loss: 0.520112
2023-06-28 00:45:43.843513 Validation: avg loss: 0.6837, avg acc: 58.0952%
2023-06-28 00:45:58.441874 Train: epoch: 9 batch: 0/4, loss: 0.445718
2023-06-28 00:46:43.734008 Validation: avg loss: 0.6768, avg acc: 58.0952%
2023-06-28 00:46:58.006825 Train: epoch: 10 batch: 0/4, loss: 0.363334
2023-06-28 00:47:43.171838 Validation: avg loss: 0.6751, avg acc: 59.0476%
2023-06-28 00:47:57.698577 Train: epoch: 11 batch: 0/4, loss: 0.271284
2023-06-28 00:48:42.711409 Validation: avg loss: 0.6619, avg acc: 60.0000%
2023-06-28 00:48:56.879045 Train: epoch: 12 batch: 0/4, loss: 0.178573
2023-06-28 00:49:42.024172 Validation: avg loss: 0.6768, avg acc: 55.2381%
2023-06-28 00:49:56.148081 Train: epoch: 13 batch: 0/4, loss: 0.140371
2023-06-28 00:50:41.341682 Validation: avg loss: 0.7109, avg acc: 54.2857%
2023-06-28 00:50:55.610759 Train: epoch: 14 batch: 0/4, loss: 0.076913
2023-06-28 00:51:40.357213 Validation: avg loss: 0.8131, avg acc: 52.3810%
2023-06-28 00:51:54.583653 Train: epoch: 15 batch: 0/4, loss: 0.067480
2023-06-28 00:52:40.140130 Validation: avg loss: 0.9456, avg acc: 51.4286%
2023-06-28 00:52:54.397041 Train: epoch: 16 batch: 0/4, loss: 0.036423
2023-06-28 00:53:39.758018 Validation: avg loss: 1.0530, avg acc: 54.2857%
2023-06-28 00:53:54.317059 Train: epoch: 17 batch: 0/4, loss: 0.028782
2023-06-28 00:54:39.533123 Validation: avg loss: 1.1482, avg acc: 56.1905%
2023-06-28 00:54:53.869185 Train: epoch: 18 batch: 0/4, loss: 0.033167
2023-06-28 00:55:39.080207 Validation: avg loss: 1.1797, avg acc: 56.1905%
2023-06-28 00:55:53.126182 Train: epoch: 19 batch: 0/4, loss: 0.016202
2023-06-28 00:56:37.472863 Validation: avg loss: 1.2256, avg acc: 56.1905%
2023-06-28 00:56:51.590106 Train: epoch: 20 batch: 0/4, loss: 0.009053
2023-06-28 00:57:36.235819 Validation: avg loss: 1.2484, avg acc: 59.0476%
2023-06-28 00:57:50.430380 Train: epoch: 21 batch: 0/4, loss: 0.010292
2023-06-28 00:58:35.398258 Validation: avg loss: 1.3279, avg acc: 60.0000%
2023-06-28 00:58:49.667245 Train: epoch: 22 batch: 0/4, loss: 0.007880
2023-06-28 00:59:34.743015 Validation: avg loss: 1.3961, avg acc: 60.0000%
2023-06-28 00:59:48.869422 Train: epoch: 23 batch: 0/4, loss: 0.009219
2023-06-28 01:00:33.718706 Validation: avg loss: 1.4046, avg acc: 56.1905%
2023-06-28 01:00:47.940706 Train: epoch: 24 batch: 0/4, loss: 0.004677
2023-06-28 01:01:33.176631 Validation: avg loss: 1.3907, avg acc: 55.2381%
2023-06-28 01:01:47.409909 Train: epoch: 25 batch: 0/4, loss: 0.008842
2023-06-28 01:02:32.479701 Validation: avg loss: 1.4078, avg acc: 58.0952%
2023-06-28 01:02:46.858229 Train: epoch: 26 batch: 0/4, loss: 0.013503
2023-06-28 01:03:32.435670 Validation: avg loss: 1.4572, avg acc: 59.0476%
2023-06-28 01:03:47.368655 Train: epoch: 27 batch: 0/4, loss: 0.006626
2023-06-28 01:04:33.722813 Validation: avg loss: 1.4598, avg acc: 59.0476%
2023-06-28 01:04:48.451678 Train: epoch: 28 batch: 0/4, loss: 0.005886
2023-06-28 01:05:34.180051 Validation: avg loss: 1.4664, avg acc: 58.0952%
2023-06-28 01:05:48.434196 Train: epoch: 29 batch: 0/4, loss: 0.004940
2023-06-28 01:06:34.316611 Validation: avg loss: 1.4973, avg acc: 56.1905%
2023-06-28 01:06:48.578069 Train: epoch: 30 batch: 0/4, loss: 0.002945
2023-06-28 01:07:33.676803 Validation: avg loss: 1.5715, avg acc: 57.1429%
2023-06-28 01:07:48.010228 Train: epoch: 31 batch: 0/4, loss: 0.004101
2023-06-28 01:08:34.145123 Validation: avg loss: 1.5615, avg acc: 56.1905%
2023-06-28 01:08:48.956649 Train: epoch: 32 batch: 0/4, loss: 0.004165
2023-06-28 01:09:33.975731 Validation: avg loss: 1.5249, avg acc: 57.1429%
2023-06-28 01:09:48.523571 Train: epoch: 33 batch: 0/4, loss: 0.002205
2023-06-28 01:10:34.181073 Validation: avg loss: 1.5044, avg acc: 57.1429%
2023-06-28 01:10:48.667479 Train: epoch: 34 batch: 0/4, loss: 0.003043
2023-06-28 01:11:34.270933 Validation: avg loss: 1.5105, avg acc: 60.0000%
2023-06-28 01:11:48.475934 Train: epoch: 35 batch: 0/4, loss: 0.005146
2023-06-28 01:12:33.493880 Validation: avg loss: 1.4945, avg acc: 59.0476%
2023-06-28 01:12:47.731703 Train: epoch: 36 batch: 0/4, loss: 0.001391
2023-06-28 01:13:34.069553 Validation: avg loss: 1.4949, avg acc: 61.9048%
2023-06-28 01:13:51.020585 Train: epoch: 37 batch: 0/4, loss: 0.002418
2023-06-28 01:14:36.726945 Validation: avg loss: 1.4473, avg acc: 61.9048%
2023-06-28 01:14:50.933113 Train: epoch: 38 batch: 0/4, loss: 0.001485
2023-06-28 01:15:35.503621 Validation: avg loss: 1.4357, avg acc: 62.8571%
2023-06-28 01:15:49.666920 Train: epoch: 39 batch: 0/4, loss: 0.001815
2023-06-28 01:16:34.379353 Validation: avg loss: 1.4482, avg acc: 61.9048%
2023-06-28 01:16:48.543897 Train: epoch: 40 batch: 0/4, loss: 0.004567
2023-06-28 01:17:33.737475 Validation: avg loss: 1.4762, avg acc: 60.9524%
2023-06-28 01:17:47.935196 Train: epoch: 41 batch: 0/4, loss: 0.000961
2023-06-28 01:18:32.496347 Validation: avg loss: 1.4937, avg acc: 60.0000%
2023-06-28 01:18:46.739428 Train: epoch: 42 batch: 0/4, loss: 0.001626
2023-06-28 01:19:31.817522 Validation: avg loss: 1.5100, avg acc: 60.0000%
2023-06-28 01:19:46.275329 Train: epoch: 43 batch: 0/4, loss: 0.000995
2023-06-28 01:20:31.148739 Validation: avg loss: 1.5247, avg acc: 59.0476%
2023-06-28 01:20:45.390128 Train: epoch: 44 batch: 0/4, loss: 0.000796
2023-06-28 01:21:30.408919 Validation: avg loss: 1.5365, avg acc: 60.9524%
2023-06-28 01:21:44.821678 Train: epoch: 45 batch: 0/4, loss: 0.001251
2023-06-28 01:22:29.741533 Validation: avg loss: 1.5421, avg acc: 60.9524%
2023-06-28 01:22:44.346410 Train: epoch: 46 batch: 0/4, loss: 0.000667
2023-06-28 01:23:30.143946 Validation: avg loss: 1.5387, avg acc: 60.9524%
2023-06-28 01:23:44.816721 Train: epoch: 47 batch: 0/4, loss: 0.000684
2023-06-28 01:24:30.374873 Validation: avg loss: 1.5321, avg acc: 61.9048%
2023-06-28 01:24:44.932431 Train: epoch: 48 batch: 0/4, loss: 0.000721
2023-06-28 01:25:30.583908 Validation: avg loss: 1.5259, avg acc: 60.0000%
2023-06-28 01:25:44.973742 Train: epoch: 49 batch: 0/4, loss: 0.001524
2023-06-28 01:26:30.076239 Validation: avg loss: 1.5328, avg acc: 60.9524%
2023-06-28 01:26:44.301327 Train: epoch: 50 batch: 0/4, loss: 0.000452
2023-06-28 01:27:29.465129 Validation: avg loss: 1.5341, avg acc: 60.0000%
2023-06-28 01:27:29.498289 cuda
2023-06-28 01:27:44.178977 Train: epoch: 1 batch: 0/4, loss: 0.694665
2023-06-28 01:28:29.371643 Validation: avg loss: 0.6901, avg acc: 57.1429%
2023-06-28 01:28:43.662205 Train: epoch: 2 batch: 0/4, loss: 0.682679
2023-06-28 01:29:28.565725 Validation: avg loss: 0.6858, avg acc: 57.1429%
2023-06-28 01:29:43.024816 Train: epoch: 3 batch: 0/4, loss: 0.678544
2023-06-28 01:30:27.987655 Validation: avg loss: 0.6832, avg acc: 57.1429%
2023-06-28 01:30:42.736962 Train: epoch: 4 batch: 0/4, loss: 0.660189
2023-06-28 01:31:27.914631 Validation: avg loss: 0.6962, avg acc: 42.8571%
2023-06-28 01:31:42.189873 Train: epoch: 5 batch: 0/4, loss: 0.659297
2023-06-28 01:32:27.646864 Validation: avg loss: 0.6919, avg acc: 57.1429%
2023-06-28 01:32:41.879671 Train: epoch: 6 batch: 0/4, loss: 0.667431
2023-06-28 01:33:26.964715 Validation: avg loss: 0.7075, avg acc: 42.8571%
2023-06-28 01:33:41.063045 Train: epoch: 7 batch: 0/4, loss: 0.617283
2023-06-28 01:34:25.824487 Validation: avg loss: 0.6911, avg acc: 60.9524%
2023-06-28 01:34:40.323201 Train: epoch: 8 batch: 0/4, loss: 0.570127
2023-06-28 01:35:25.522091 Validation: avg loss: 0.6935, avg acc: 45.7143%
2023-06-28 01:35:39.993172 Train: epoch: 9 batch: 0/4, loss: 0.548969
2023-06-28 01:36:25.697874 Validation: avg loss: 0.7317, avg acc: 42.8571%
2023-06-28 01:36:39.958004 Train: epoch: 10 batch: 0/4, loss: 0.484664
2023-06-28 01:37:25.704423 Validation: avg loss: 0.7028, avg acc: 49.5238%
2023-06-28 01:37:40.575212 Train: epoch: 11 batch: 0/4, loss: 0.441138
2023-06-28 01:38:26.980730 Validation: avg loss: 0.7058, avg acc: 49.5238%
2023-06-28 01:38:41.458257 Train: epoch: 12 batch: 0/4, loss: 0.367233
2023-06-28 01:39:26.975605 Validation: avg loss: 0.7120, avg acc: 50.4762%
2023-06-28 01:39:41.237388 Train: epoch: 13 batch: 0/4, loss: 0.213344
2023-06-28 01:40:26.060785 Validation: avg loss: 0.6638, avg acc: 63.8095%
2023-06-28 01:40:40.391417 Train: epoch: 14 batch: 0/4, loss: 0.255976
2023-06-28 01:41:25.504246 Validation: avg loss: 0.6382, avg acc: 61.9048%
2023-06-28 01:41:39.780481 Train: epoch: 15 batch: 0/4, loss: 0.102169
2023-06-28 01:42:25.074077 Validation: avg loss: 0.7021, avg acc: 62.8571%
2023-06-28 01:42:39.402949 Train: epoch: 16 batch: 0/4, loss: 0.099181
2023-06-28 01:43:24.189954 Validation: avg loss: 0.7925, avg acc: 61.9048%
2023-06-28 01:43:38.854012 Train: epoch: 17 batch: 0/4, loss: 0.057370
2023-06-28 01:44:23.593833 Validation: avg loss: 0.9190, avg acc: 60.0000%
2023-06-28 01:44:38.082592 Train: epoch: 18 batch: 0/4, loss: 0.051161
2023-06-28 01:45:22.948901 Validation: avg loss: 1.1094, avg acc: 55.2381%
2023-06-28 01:45:37.120141 Train: epoch: 19 batch: 0/4, loss: 0.028416
2023-06-28 01:46:22.201313 Validation: avg loss: 1.1909, avg acc: 58.0952%
2023-06-28 01:46:36.615099 Train: epoch: 20 batch: 0/4, loss: 0.018945
2023-06-28 01:47:21.802085 Validation: avg loss: 1.2461, avg acc: 60.9524%
2023-06-28 01:47:36.094373 Train: epoch: 21 batch: 0/4, loss: 0.011535
2023-06-28 01:48:21.098979 Validation: avg loss: 1.2550, avg acc: 61.9048%
2023-06-28 01:48:35.396349 Train: epoch: 22 batch: 0/4, loss: 0.017535
2023-06-28 01:49:20.045914 Validation: avg loss: 1.1881, avg acc: 61.9048%
2023-06-28 01:49:34.214638 Train: epoch: 23 batch: 0/4, loss: 0.020899
2023-06-28 01:50:19.639548 Validation: avg loss: 1.2605, avg acc: 62.8571%
2023-06-28 01:50:33.690343 Train: epoch: 24 batch: 0/4, loss: 0.013029
2023-06-28 01:51:18.948007 Validation: avg loss: 1.4516, avg acc: 59.0476%
2023-06-28 01:51:33.346062 Train: epoch: 25 batch: 0/4, loss: 0.026440
2023-06-28 01:52:17.898719 Validation: avg loss: 1.4270, avg acc: 61.9048%
2023-06-28 01:52:32.075626 Train: epoch: 26 batch: 0/4, loss: 0.015461
2023-06-28 01:53:17.104184 Validation: avg loss: 1.4306, avg acc: 64.7619%
2023-06-28 01:53:31.273740 Train: epoch: 27 batch: 0/4, loss: 0.013917
2023-06-28 01:54:16.904646 Validation: avg loss: 1.4380, avg acc: 63.8095%
2023-06-28 01:54:31.165321 Train: epoch: 28 batch: 0/4, loss: 0.009092
2023-06-28 01:55:16.958980 Validation: avg loss: 1.4684, avg acc: 60.0000%
2023-06-28 01:55:31.080000 Train: epoch: 29 batch: 0/4, loss: 0.027234
2023-06-28 01:56:15.931152 Validation: avg loss: 1.5698, avg acc: 63.8095%
2023-06-28 01:56:30.209265 Train: epoch: 30 batch: 0/4, loss: 0.005990
2023-06-28 01:57:15.520408 Validation: avg loss: 1.5776, avg acc: 71.4286%
2023-06-28 01:57:29.918785 Train: epoch: 31 batch: 0/4, loss: 0.007899
2023-06-28 01:58:15.301725 Validation: avg loss: 1.6919, avg acc: 66.6667%
2023-06-28 01:58:30.041185 Train: epoch: 32 batch: 0/4, loss: 0.010279
2023-06-28 01:59:15.084527 Validation: avg loss: 1.8546, avg acc: 62.8571%
2023-06-28 01:59:29.231390 Train: epoch: 33 batch: 0/4, loss: 0.007202
2023-06-28 02:00:14.169353 Validation: avg loss: 1.7220, avg acc: 63.8095%
2023-06-28 02:00:28.461046 Train: epoch: 34 batch: 0/4, loss: 0.009014
2023-06-28 02:01:13.840142 Validation: avg loss: 1.5476, avg acc: 66.6667%
2023-06-28 02:01:28.402509 Train: epoch: 35 batch: 0/4, loss: 0.011448
2023-06-28 02:02:14.837432 Validation: avg loss: 1.4587, avg acc: 64.7619%
2023-06-28 02:02:29.477797 Train: epoch: 36 batch: 0/4, loss: 0.004358
2023-06-28 02:03:14.868202 Validation: avg loss: 1.5383, avg acc: 60.0000%
2023-06-28 02:03:29.201787 Train: epoch: 37 batch: 0/4, loss: 0.009107
2023-06-28 02:04:13.978770 Validation: avg loss: 1.6280, avg acc: 60.0000%
2023-06-28 02:04:28.043453 Train: epoch: 38 batch: 0/4, loss: 0.012865
2023-06-28 02:05:13.314995 Validation: avg loss: 1.4671, avg acc: 60.9524%
2023-06-28 02:05:27.596150 Train: epoch: 39 batch: 0/4, loss: 0.009916
2023-06-28 02:06:14.256498 Validation: avg loss: 1.5654, avg acc: 67.6190%
2023-06-28 02:06:31.292249 Train: epoch: 40 batch: 0/4, loss: 0.004399
2023-06-28 02:07:25.473131 Validation: avg loss: 1.6744, avg acc: 67.6190%
2023-06-28 02:07:42.836883 Train: epoch: 41 batch: 0/4, loss: 0.005982
2023-06-28 02:08:37.663422 Validation: avg loss: 1.6835, avg acc: 64.7619%
2023-06-28 02:08:54.637783 Train: epoch: 42 batch: 0/4, loss: 0.003240
2023-06-28 02:09:47.997422 Validation: avg loss: 1.6657, avg acc: 63.8095%
2023-06-28 02:10:04.771465 Train: epoch: 43 batch: 0/4, loss: 0.006902
2023-06-28 02:10:58.377040 Validation: avg loss: 1.7045, avg acc: 65.7143%
2023-06-28 02:11:15.395956 Train: epoch: 44 batch: 0/4, loss: 0.010419
2023-06-28 02:12:09.470289 Validation: avg loss: 1.7507, avg acc: 66.6667%
2023-06-28 02:12:26.317963 Train: epoch: 45 batch: 0/4, loss: 0.003494
2023-06-28 02:13:14.431945 Validation: avg loss: 1.7484, avg acc: 66.6667%
2023-06-28 02:13:28.901484 Train: epoch: 46 batch: 0/4, loss: 0.001555
2023-06-28 02:14:13.942030 Validation: avg loss: 1.8422, avg acc: 60.9524%
2023-06-28 02:14:28.333940 Train: epoch: 47 batch: 0/4, loss: 0.003026
2023-06-28 02:15:13.232646 Validation: avg loss: 2.1813, avg acc: 60.9524%
2023-06-28 02:15:27.601842 Train: epoch: 48 batch: 0/4, loss: 0.001304
2023-06-28 02:16:12.214901 Validation: avg loss: 2.1655, avg acc: 61.9048%
2023-06-28 02:16:26.543083 Train: epoch: 49 batch: 0/4, loss: 0.003734
2023-06-28 02:17:11.206616 Validation: avg loss: 2.1269, avg acc: 60.0000%
2023-06-28 02:17:25.427501 Train: epoch: 50 batch: 0/4, loss: 0.008758
2023-06-28 02:18:10.157643 Validation: avg loss: 2.0094, avg acc: 62.8571%
2023-06-28 02:18:10.191347 cuda
2023-06-28 02:18:24.590105 Train: epoch: 1 batch: 0/4, loss: 0.690249
2023-06-28 02:19:09.969172 Validation: avg loss: 0.6905, avg acc: 58.0952%
2023-06-28 02:19:24.498012 Train: epoch: 2 batch: 0/4, loss: 0.682551
2023-06-28 02:20:12.924872 Validation: avg loss: 0.6843, avg acc: 58.0952%
2023-06-28 02:20:27.411335 Train: epoch: 3 batch: 0/4, loss: 0.691065
2023-06-28 02:21:12.226704 Validation: avg loss: 0.6844, avg acc: 58.0952%
2023-06-28 02:21:26.494891 Train: epoch: 4 batch: 0/4, loss: 0.656486
2023-06-28 02:22:11.201627 Validation: avg loss: 0.6885, avg acc: 58.0952%
2023-06-28 02:22:25.324919 Train: epoch: 5 batch: 0/4, loss: 0.641778
2023-06-28 02:23:10.589578 Validation: avg loss: 0.6955, avg acc: 41.9048%
2023-06-28 02:23:24.986591 Train: epoch: 6 batch: 0/4, loss: 0.635714
2023-06-28 02:24:09.995102 Validation: avg loss: 0.6892, avg acc: 58.0952%
2023-06-28 02:24:24.299061 Train: epoch: 7 batch: 0/4, loss: 0.588812
2023-06-28 02:25:09.383180 Validation: avg loss: 0.7100, avg acc: 41.9048%
2023-06-28 02:25:23.459523 Train: epoch: 8 batch: 0/4, loss: 0.580687
2023-06-28 02:26:08.476721 Validation: avg loss: 0.6989, avg acc: 43.8095%
2023-06-28 02:26:22.636932 Train: epoch: 9 batch: 0/4, loss: 0.538401
2023-06-28 02:27:07.755846 Validation: avg loss: 0.7032, avg acc: 44.7619%
2023-06-28 02:27:22.308433 Train: epoch: 10 batch: 0/4, loss: 0.479063
2023-06-28 02:28:08.023222 Validation: avg loss: 0.7259, avg acc: 43.8095%
2023-06-28 02:28:22.212473 Train: epoch: 11 batch: 0/4, loss: 0.399180
2023-06-28 02:29:07.187142 Validation: avg loss: 0.6419, avg acc: 66.6667%
2023-06-28 02:29:21.459886 Train: epoch: 12 batch: 0/4, loss: 0.374041
2023-06-28 02:30:06.783311 Validation: avg loss: 0.6404, avg acc: 63.8095%
2023-06-28 02:30:20.925891 Train: epoch: 13 batch: 0/4, loss: 0.199607
2023-06-28 02:31:09.303999 Validation: avg loss: 0.6425, avg acc: 64.7619%
2023-06-28 02:31:26.317069 Train: epoch: 14 batch: 0/4, loss: 0.210665
2023-06-28 02:32:14.248001 Validation: avg loss: 0.6495, avg acc: 64.7619%
2023-06-28 02:32:28.770466 Train: epoch: 15 batch: 0/4, loss: 0.094463
2023-06-28 02:33:13.835456 Validation: avg loss: 0.6781, avg acc: 64.7619%
2023-06-28 02:33:28.075316 Train: epoch: 16 batch: 0/4, loss: 0.071825
2023-06-28 02:34:13.056136 Validation: avg loss: 0.6933, avg acc: 66.6667%
2023-06-28 02:34:27.574360 Train: epoch: 17 batch: 0/4, loss: 0.075157
2023-06-28 02:35:12.945181 Validation: avg loss: 0.7505, avg acc: 64.7619%
2023-06-28 02:35:27.190267 Train: epoch: 18 batch: 0/4, loss: 0.035870
2023-06-28 02:36:12.281194 Validation: avg loss: 0.8531, avg acc: 64.7619%
2023-06-28 02:36:26.858452 Train: epoch: 19 batch: 0/4, loss: 0.024990
2023-06-28 02:37:12.890268 Validation: avg loss: 0.9023, avg acc: 64.7619%
2023-06-28 02:37:27.425535 Train: epoch: 20 batch: 0/4, loss: 0.019082
2023-06-28 02:38:12.722207 Validation: avg loss: 0.9582, avg acc: 66.6667%
2023-06-28 02:38:27.265360 Train: epoch: 21 batch: 0/4, loss: 0.010728
2023-06-28 02:39:12.364647 Validation: avg loss: 0.9925, avg acc: 65.7143%
2023-06-28 02:39:26.689739 Train: epoch: 22 batch: 0/4, loss: 0.023405
2023-06-28 02:40:11.877307 Validation: avg loss: 1.0391, avg acc: 63.8095%
2023-06-28 02:40:26.261142 Train: epoch: 23 batch: 0/4, loss: 0.006633
2023-06-28 02:41:11.681557 Validation: avg loss: 1.0852, avg acc: 64.7619%
2023-06-28 02:41:25.847109 Train: epoch: 24 batch: 0/4, loss: 0.015039
2023-06-28 02:42:10.949129 Validation: avg loss: 1.2231, avg acc: 66.6667%
2023-06-28 02:42:25.108043 Train: epoch: 25 batch: 0/4, loss: 0.017307
2023-06-28 02:43:10.040710 Validation: avg loss: 1.1383, avg acc: 62.8571%
2023-06-28 02:43:24.367214 Train: epoch: 26 batch: 0/4, loss: 0.009442
2023-06-28 02:44:10.201937 Validation: avg loss: 1.1565, avg acc: 64.7619%
2023-06-28 02:44:24.655029 Train: epoch: 27 batch: 0/4, loss: 0.008642
2023-06-28 02:45:16.466766 Validation: avg loss: 1.2177, avg acc: 65.7143%
2023-06-28 02:45:34.059083 Train: epoch: 28 batch: 0/4, loss: 0.004727
2023-06-28 02:46:26.336540 Validation: avg loss: 1.2653, avg acc: 63.8095%
2023-06-28 02:46:43.131403 Train: epoch: 29 batch: 0/4, loss: 0.003736
2023-06-28 02:47:36.324387 Validation: avg loss: 1.3018, avg acc: 64.7619%
2023-06-28 02:47:53.401691 Train: epoch: 30 batch: 0/4, loss: 0.004438
2023-06-28 02:48:48.112933 Validation: avg loss: 1.3224, avg acc: 63.8095%
2023-06-28 02:49:05.076562 Train: epoch: 31 batch: 0/4, loss: 0.004074
2023-06-28 02:49:58.477870 Validation: avg loss: 1.3503, avg acc: 62.8571%
2023-06-28 02:50:15.549796 Train: epoch: 32 batch: 0/4, loss: 0.005016
2023-06-28 02:51:08.879135 Validation: avg loss: 1.3151, avg acc: 61.9048%
2023-06-28 02:51:25.677918 Train: epoch: 33 batch: 0/4, loss: 0.002044
2023-06-28 02:52:20.105423 Validation: avg loss: 1.2926, avg acc: 62.8571%
2023-06-28 02:52:37.041849 Train: epoch: 34 batch: 0/4, loss: 0.002703
2023-06-28 02:53:31.706319 Validation: avg loss: 1.2878, avg acc: 63.8095%
2023-06-28 02:53:49.176129 Train: epoch: 35 batch: 0/4, loss: 0.003849
2023-06-28 02:54:42.142647 Validation: avg loss: 1.3129, avg acc: 63.8095%
2023-06-28 02:54:56.427546 Train: epoch: 36 batch: 0/4, loss: 0.001835
2023-06-28 02:55:41.494277 Validation: avg loss: 1.3500, avg acc: 61.9048%
2023-06-28 02:55:55.778091 Train: epoch: 37 batch: 0/4, loss: 0.002286
2023-06-28 02:56:41.046795 Validation: avg loss: 1.3715, avg acc: 62.8571%
2023-06-28 02:56:55.370527 Train: epoch: 38 batch: 0/4, loss: 0.001753
2023-06-28 02:57:40.945144 Validation: avg loss: 1.3863, avg acc: 64.7619%
2023-06-28 02:57:55.244577 Train: epoch: 39 batch: 0/4, loss: 0.001636
2023-06-28 02:58:40.557081 Validation: avg loss: 1.4102, avg acc: 64.7619%
2023-06-28 02:58:54.994770 Train: epoch: 40 batch: 0/4, loss: 0.001649
2023-06-28 02:59:39.954962 Validation: avg loss: 1.4169, avg acc: 63.8095%
2023-06-28 02:59:54.214338 Train: epoch: 41 batch: 0/4, loss: 0.001002
2023-06-28 03:00:39.437733 Validation: avg loss: 1.4182, avg acc: 62.8571%
2023-06-28 03:00:53.650708 Train: epoch: 42 batch: 0/4, loss: 0.001196
2023-06-28 03:01:39.005193 Validation: avg loss: 1.4063, avg acc: 62.8571%
2023-06-28 03:01:53.324523 Train: epoch: 43 batch: 0/4, loss: 0.000889
2023-06-28 03:02:38.746603 Validation: avg loss: 1.4078, avg acc: 63.8095%
2023-06-28 03:02:52.879053 Train: epoch: 44 batch: 0/4, loss: 0.001685
2023-06-28 03:03:37.789140 Validation: avg loss: 1.3901, avg acc: 63.8095%
2023-06-28 03:03:51.837770 Train: epoch: 45 batch: 0/4, loss: 0.001467
2023-06-28 03:04:37.321315 Validation: avg loss: 1.4143, avg acc: 63.8095%
2023-06-28 03:04:51.924517 Train: epoch: 46 batch: 0/4, loss: 0.001200
2023-06-28 03:05:37.733740 Validation: avg loss: 1.4240, avg acc: 63.8095%
2023-06-28 03:05:51.972393 Train: epoch: 47 batch: 0/4, loss: 0.000806
2023-06-28 03:06:39.101561 Validation: avg loss: 1.4204, avg acc: 63.8095%
2023-06-28 03:06:53.373502 Train: epoch: 48 batch: 0/4, loss: 0.000644
2023-06-28 03:07:38.640922 Validation: avg loss: 1.4185, avg acc: 62.8571%
2023-06-28 03:07:53.026508 Train: epoch: 49 batch: 0/4, loss: 0.000653
2023-06-28 03:08:38.046226 Validation: avg loss: 1.3947, avg acc: 62.8571%
2023-06-28 03:08:52.122996 Train: epoch: 50 batch: 0/4, loss: 0.000570
2023-06-28 03:09:37.119446 Validation: avg loss: 1.3931, avg acc: 62.8571%
2023-06-28 03:09:37.154578 cuda
2023-06-28 03:09:51.449183 Train: epoch: 1 batch: 0/4, loss: 0.693002
2023-06-28 03:10:37.293540 Validation: avg loss: 0.6892, avg acc: 58.0952%
2023-06-28 03:10:51.688451 Train: epoch: 2 batch: 0/4, loss: 0.687561
2023-06-28 03:11:36.852454 Validation: avg loss: 0.6810, avg acc: 58.0952%
2023-06-28 03:11:50.960553 Train: epoch: 3 batch: 0/4, loss: 0.681805
2023-06-28 03:12:36.129192 Validation: avg loss: 0.6913, avg acc: 58.0952%
2023-06-28 03:12:50.476572 Train: epoch: 4 batch: 0/4, loss: 0.665961
2023-06-28 03:13:35.487521 Validation: avg loss: 0.6886, avg acc: 58.0952%
2023-06-28 03:13:49.861003 Train: epoch: 5 batch: 0/4, loss: 0.644194
2023-06-28 03:14:35.147609 Validation: avg loss: 0.6877, avg acc: 58.0952%
2023-06-28 03:14:49.535890 Train: epoch: 6 batch: 0/4, loss: 0.622670
2023-06-28 03:15:34.784671 Validation: avg loss: 0.6870, avg acc: 58.0952%
2023-06-28 03:15:49.337855 Train: epoch: 7 batch: 0/4, loss: 0.599810
2023-06-28 03:16:34.214166 Validation: avg loss: 0.6969, avg acc: 41.9048%
2023-06-28 03:16:48.536066 Train: epoch: 8 batch: 0/4, loss: 0.545521
2023-06-28 03:17:33.960131 Validation: avg loss: 0.6841, avg acc: 55.2381%
2023-06-28 03:17:48.281651 Train: epoch: 9 batch: 0/4, loss: 0.452313
2023-06-28 03:18:33.276105 Validation: avg loss: 0.6612, avg acc: 72.3810%
2023-06-28 03:18:47.585477 Train: epoch: 10 batch: 0/4, loss: 0.390662
2023-06-28 03:19:32.407151 Validation: avg loss: 0.6701, avg acc: 50.4762%
2023-06-28 03:19:46.747612 Train: epoch: 11 batch: 0/4, loss: 0.324581
2023-06-28 03:20:31.709394 Validation: avg loss: 0.5978, avg acc: 67.6190%
2023-06-28 03:20:45.958098 Train: epoch: 12 batch: 0/4, loss: 0.254065
2023-06-28 03:21:31.222952 Validation: avg loss: 0.5616, avg acc: 68.5714%
2023-06-28 03:21:45.962876 Train: epoch: 13 batch: 0/4, loss: 0.200924
2023-06-28 03:22:31.271403 Validation: avg loss: 0.5085, avg acc: 71.4286%
2023-06-28 03:22:45.628448 Train: epoch: 14 batch: 0/4, loss: 0.124987
2023-06-28 03:23:32.817547 Validation: avg loss: 0.4824, avg acc: 75.2381%
2023-06-28 03:23:47.162008 Train: epoch: 15 batch: 0/4, loss: 0.090232
2023-06-28 03:24:32.146921 Validation: avg loss: 0.5138, avg acc: 70.4762%
2023-06-28 03:24:46.642517 Train: epoch: 16 batch: 0/4, loss: 0.083759
2023-06-28 03:25:32.353083 Validation: avg loss: 0.5420, avg acc: 69.5238%
2023-06-28 03:25:47.131522 Train: epoch: 17 batch: 0/4, loss: 0.066651
2023-06-28 03:26:32.781357 Validation: avg loss: 0.5527, avg acc: 73.3333%
2023-06-28 03:26:47.379127 Train: epoch: 18 batch: 0/4, loss: 0.024152
2023-06-28 03:27:33.147812 Validation: avg loss: 0.5908, avg acc: 71.4286%
2023-06-28 03:27:47.568344 Train: epoch: 19 batch: 0/4, loss: 0.017142
2023-06-28 03:28:33.092234 Validation: avg loss: 0.5997, avg acc: 70.4762%
2023-06-28 03:28:47.603911 Train: epoch: 20 batch: 0/4, loss: 0.012679
2023-06-28 03:29:33.533011 Validation: avg loss: 0.6142, avg acc: 76.1905%
2023-06-28 03:29:48.120699 Train: epoch: 21 batch: 0/4, loss: 0.019406
2023-06-28 03:30:33.497260 Validation: avg loss: 0.6960, avg acc: 74.2857%
2023-06-28 03:30:47.796580 Train: epoch: 22 batch: 0/4, loss: 0.023462
2023-06-28 03:31:32.909514 Validation: avg loss: 0.7432, avg acc: 73.3333%
2023-06-28 03:31:47.165250 Train: epoch: 23 batch: 0/4, loss: 0.010763
2023-06-28 03:32:31.899234 Validation: avg loss: 0.7907, avg acc: 72.3810%
2023-06-28 03:32:46.438450 Train: epoch: 24 batch: 0/4, loss: 0.013663
2023-06-28 03:33:31.940938 Validation: avg loss: 0.7950, avg acc: 68.5714%
2023-06-28 03:33:46.516226 Train: epoch: 25 batch: 0/4, loss: 0.006725
2023-06-28 03:34:32.670997 Validation: avg loss: 0.8249, avg acc: 69.5238%
2023-06-28 03:34:47.337794 Train: epoch: 26 batch: 0/4, loss: 0.004846
2023-06-28 03:35:33.504480 Validation: avg loss: 0.8479, avg acc: 72.3810%
2023-06-28 03:35:47.772504 Train: epoch: 27 batch: 0/4, loss: 0.005277
2023-06-28 03:36:32.575498 Validation: avg loss: 0.8493, avg acc: 72.3810%
2023-06-28 03:36:46.665919 Train: epoch: 28 batch: 0/4, loss: 0.011446
2023-06-28 03:37:31.196006 Validation: avg loss: 0.8339, avg acc: 71.4286%
2023-06-28 03:37:45.377302 Train: epoch: 29 batch: 0/4, loss: 0.003922
2023-06-28 03:38:30.580648 Validation: avg loss: 0.8505, avg acc: 72.3810%
2023-06-28 03:38:44.775296 Train: epoch: 30 batch: 0/4, loss: 0.002529
2023-06-28 03:39:29.493308 Validation: avg loss: 0.8773, avg acc: 71.4286%
2023-06-28 03:39:43.608244 Train: epoch: 31 batch: 0/4, loss: 0.001875
2023-06-28 03:40:28.207967 Validation: avg loss: 0.8870, avg acc: 70.4762%
2023-06-28 03:40:42.352605 Train: epoch: 32 batch: 0/4, loss: 0.002372
2023-06-28 03:41:27.482733 Validation: avg loss: 0.8911, avg acc: 72.3810%
2023-06-28 03:41:41.670935 Train: epoch: 33 batch: 0/4, loss: 0.003411
2023-06-28 03:42:26.716992 Validation: avg loss: 0.8858, avg acc: 72.3810%
2023-06-28 03:42:41.008464 Train: epoch: 34 batch: 0/4, loss: 0.002562
2023-06-28 03:43:26.039612 Validation: avg loss: 0.8796, avg acc: 72.3810%
2023-06-28 03:43:40.260189 Train: epoch: 35 batch: 0/4, loss: 0.003069
2023-06-28 03:44:25.722423 Validation: avg loss: 0.8868, avg acc: 72.3810%
2023-06-28 03:44:39.923484 Train: epoch: 36 batch: 0/4, loss: 0.001231
2023-06-28 03:45:25.127050 Validation: avg loss: 0.8910, avg acc: 73.3333%
2023-06-28 03:45:39.527841 Train: epoch: 37 batch: 0/4, loss: 0.001668
2023-06-28 03:46:24.319152 Validation: avg loss: 0.8928, avg acc: 73.3333%
2023-06-28 03:46:38.520530 Train: epoch: 38 batch: 0/4, loss: 0.001577
2023-06-28 03:47:23.353992 Validation: avg loss: 0.8915, avg acc: 73.3333%
2023-06-28 03:47:37.434393 Train: epoch: 39 batch: 0/4, loss: 0.001705
2023-06-28 03:48:22.834245 Validation: avg loss: 0.8936, avg acc: 73.3333%
2023-06-28 03:48:37.254894 Train: epoch: 40 batch: 0/4, loss: 0.001388
2023-06-28 03:49:22.471289 Validation: avg loss: 0.9009, avg acc: 73.3333%
2023-06-28 03:49:36.564547 Train: epoch: 41 batch: 0/4, loss: 0.000861
2023-06-28 03:50:21.412126 Validation: avg loss: 0.9012, avg acc: 74.2857%
2023-06-28 03:50:35.489009 Train: epoch: 42 batch: 0/4, loss: 0.001102
2023-06-28 03:51:20.143782 Validation: avg loss: 0.9065, avg acc: 74.2857%
2023-06-28 03:51:34.559930 Train: epoch: 43 batch: 0/4, loss: 0.000969
2023-06-28 03:52:19.340878 Validation: avg loss: 0.9071, avg acc: 74.2857%
2023-06-28 03:52:33.401578 Train: epoch: 44 batch: 0/4, loss: 0.000865
2023-06-28 03:53:18.033301 Validation: avg loss: 0.9177, avg acc: 73.3333%
2023-06-28 03:53:32.150168 Train: epoch: 45 batch: 0/4, loss: 0.000941
2023-06-28 03:54:17.146896 Validation: avg loss: 0.9327, avg acc: 74.2857%
2023-06-28 03:54:31.352235 Train: epoch: 46 batch: 0/4, loss: 0.000957
2023-06-28 03:55:17.407628 Validation: avg loss: 0.9416, avg acc: 74.2857%
2023-06-28 03:55:31.626750 Train: epoch: 47 batch: 0/4, loss: 0.000746
2023-06-28 03:56:16.058637 Validation: avg loss: 0.9409, avg acc: 74.2857%
2023-06-28 03:56:30.100803 Train: epoch: 48 batch: 0/4, loss: 0.001412
2023-06-28 03:57:14.611239 Validation: avg loss: 0.9413, avg acc: 73.3333%
2023-06-28 03:57:28.762473 Train: epoch: 49 batch: 0/4, loss: 0.000834
2023-06-28 03:58:13.474519 Validation: avg loss: 0.9323, avg acc: 75.2381%
2023-06-28 03:58:27.820951 Train: epoch: 50 batch: 0/4, loss: 0.000935
2023-06-28 03:59:12.546035 Validation: avg loss: 0.9237, avg acc: 74.2857%
2023-06-28 03:59:12.580120 cuda
2023-06-28 03:59:26.750708 Train: epoch: 1 batch: 0/4, loss: 0.694612
2023-06-28 04:00:11.426282 Validation: avg loss: 0.6861, avg acc: 59.0476%
2023-06-28 04:00:25.908546 Train: epoch: 2 batch: 0/4, loss: 0.706914
2023-06-28 04:01:11.184999 Validation: avg loss: 0.6830, avg acc: 59.0476%
2023-06-28 04:01:25.798044 Train: epoch: 3 batch: 0/4, loss: 0.680926
2023-06-28 04:02:12.099444 Validation: avg loss: 0.6799, avg acc: 59.0476%
2023-06-28 04:02:26.460111 Train: epoch: 4 batch: 0/4, loss: 0.667983
2023-06-28 04:03:10.998068 Validation: avg loss: 0.6784, avg acc: 59.0476%
2023-06-28 04:03:25.196184 Train: epoch: 5 batch: 0/4, loss: 0.658656
2023-06-28 04:04:09.841678 Validation: avg loss: 0.6800, avg acc: 59.0476%
2023-06-28 04:04:24.079110 Train: epoch: 6 batch: 0/4, loss: 0.663088
2023-06-28 04:05:08.763914 Validation: avg loss: 0.6773, avg acc: 59.0476%
2023-06-28 04:05:23.003873 Train: epoch: 7 batch: 0/4, loss: 0.629996
2023-06-28 04:06:08.637310 Validation: avg loss: 0.6743, avg acc: 59.0476%
2023-06-28 04:06:23.407611 Train: epoch: 8 batch: 0/4, loss: 0.597220
2023-06-28 04:07:08.242516 Validation: avg loss: 0.6800, avg acc: 59.0476%
2023-06-28 04:07:22.526979 Train: epoch: 9 batch: 0/4, loss: 0.537858
2023-06-28 04:08:07.101244 Validation: avg loss: 0.6709, avg acc: 59.0476%
2023-06-28 04:08:21.328130 Train: epoch: 10 batch: 0/4, loss: 0.478460
2023-06-28 04:09:05.828543 Validation: avg loss: 0.6716, avg acc: 63.8095%
2023-06-28 04:09:19.873732 Train: epoch: 11 batch: 0/4, loss: 0.395090
2023-06-28 04:10:05.058702 Validation: avg loss: 0.6379, avg acc: 65.7143%
2023-06-28 04:10:19.285747 Train: epoch: 12 batch: 0/4, loss: 0.331272
2023-06-28 04:11:03.953933 Validation: avg loss: 0.6334, avg acc: 61.9048%
2023-06-28 04:11:18.090531 Train: epoch: 13 batch: 0/4, loss: 0.270222
2023-06-28 04:12:02.755340 Validation: avg loss: 0.5858, avg acc: 70.4762%
2023-06-28 04:12:16.950131 Train: epoch: 14 batch: 0/4, loss: 0.168852
2023-06-28 04:13:01.884081 Validation: avg loss: 0.5932, avg acc: 64.7619%
2023-06-28 04:13:16.075769 Train: epoch: 15 batch: 0/4, loss: 0.140117
2023-06-28 04:14:01.014580 Validation: avg loss: 0.6184, avg acc: 67.6190%
2023-06-28 04:14:15.406445 Train: epoch: 16 batch: 0/4, loss: 0.100922
2023-06-28 04:15:00.611265 Validation: avg loss: 0.6841, avg acc: 62.8571%
2023-06-28 04:15:14.772177 Train: epoch: 17 batch: 0/4, loss: 0.064960
2023-06-28 04:15:59.270308 Validation: avg loss: 0.8381, avg acc: 60.0000%
2023-06-28 04:16:13.358347 Train: epoch: 18 batch: 0/4, loss: 0.041114
2023-06-28 04:16:58.412814 Validation: avg loss: 0.8127, avg acc: 63.8095%
2023-06-28 04:17:12.859787 Train: epoch: 19 batch: 0/4, loss: 0.028654
2023-06-28 04:17:58.746568 Validation: avg loss: 0.8722, avg acc: 63.8095%
2023-06-28 04:18:13.193857 Train: epoch: 20 batch: 0/4, loss: 0.020548
2023-06-28 04:18:58.557002 Validation: avg loss: 1.0138, avg acc: 63.8095%
2023-06-28 04:19:12.811166 Train: epoch: 21 batch: 0/4, loss: 0.024834
2023-06-28 04:19:57.383134 Validation: avg loss: 1.1134, avg acc: 65.7143%
2023-06-28 04:20:11.593541 Train: epoch: 22 batch: 0/4, loss: 0.024447
2023-06-28 04:20:56.144567 Validation: avg loss: 1.1052, avg acc: 61.9048%
2023-06-28 04:21:10.280428 Train: epoch: 23 batch: 0/4, loss: 0.024402
2023-06-28 04:21:55.164144 Validation: avg loss: 1.0037, avg acc: 62.8571%
2023-06-28 04:22:09.484836 Train: epoch: 24 batch: 0/4, loss: 0.026940
2023-06-28 04:22:54.337155 Validation: avg loss: 1.1395, avg acc: 65.7143%
2023-06-28 04:23:08.575422 Train: epoch: 25 batch: 0/4, loss: 0.020789
2023-06-28 04:23:53.433541 Validation: avg loss: 1.1802, avg acc: 65.7143%
2023-06-28 04:24:07.944800 Train: epoch: 26 batch: 0/4, loss: 0.017444
2023-06-28 04:24:53.299679 Validation: avg loss: 1.0212, avg acc: 67.6190%
2023-06-28 04:25:07.765353 Train: epoch: 27 batch: 0/4, loss: 0.013250
2023-06-28 04:25:52.812562 Validation: avg loss: 0.9592, avg acc: 68.5714%
2023-06-28 04:26:07.260835 Train: epoch: 28 batch: 0/4, loss: 0.011131
2023-06-28 04:26:52.346310 Validation: avg loss: 1.1193, avg acc: 72.3810%
2023-06-28 04:27:06.644760 Train: epoch: 29 batch: 0/4, loss: 0.026329
2023-06-28 04:27:51.863781 Validation: avg loss: 1.1687, avg acc: 64.7619%
2023-06-28 04:28:05.962933 Train: epoch: 30 batch: 0/4, loss: 0.011010
2023-06-28 04:28:50.606240 Validation: avg loss: 1.1444, avg acc: 63.8095%
2023-06-28 04:29:04.812994 Train: epoch: 31 batch: 0/4, loss: 0.007555
2023-06-28 04:29:49.894941 Validation: avg loss: 1.2691, avg acc: 69.5238%
2023-06-28 04:30:04.020104 Train: epoch: 32 batch: 0/4, loss: 0.026084
2023-06-28 04:30:48.602736 Validation: avg loss: 1.3224, avg acc: 65.7143%
2023-06-28 04:31:02.668182 Train: epoch: 33 batch: 0/4, loss: 0.016953
2023-06-28 04:31:47.391245 Validation: avg loss: 1.3359, avg acc: 63.8095%
2023-06-28 04:32:01.694358 Train: epoch: 34 batch: 0/4, loss: 0.007214
2023-06-28 04:32:46.917156 Validation: avg loss: 1.2960, avg acc: 64.7619%
2023-06-28 04:33:01.216805 Train: epoch: 35 batch: 0/4, loss: 0.016135
2023-06-28 04:33:52.554001 Validation: avg loss: 1.3414, avg acc: 66.6667%
2023-06-28 04:34:09.581260 Train: epoch: 36 batch: 0/4, loss: 0.005827
2023-06-28 04:35:03.567810 Validation: avg loss: 1.4429, avg acc: 63.8095%
2023-06-28 04:35:20.656888 Train: epoch: 37 batch: 0/4, loss: 0.003277
2023-06-28 04:36:14.468588 Validation: avg loss: 1.5331, avg acc: 63.8095%
2023-06-28 04:36:31.559136 Train: epoch: 38 batch: 0/4, loss: 0.006702
2023-06-28 04:37:25.303902 Validation: avg loss: 1.5363, avg acc: 64.7619%
2023-06-28 04:37:42.401555 Train: epoch: 39 batch: 0/4, loss: 0.006998
2023-06-28 04:38:35.539481 Validation: avg loss: 1.5584, avg acc: 65.7143%
2023-06-28 04:38:52.511838 Train: epoch: 40 batch: 0/4, loss: 0.004243
2023-06-28 04:39:40.018935 Validation: avg loss: 1.5435, avg acc: 64.7619%
2023-06-28 04:39:54.218691 Train: epoch: 41 batch: 0/4, loss: 0.005694
2023-06-28 04:40:39.406743 Validation: avg loss: 1.5224, avg acc: 65.7143%
2023-06-28 04:40:53.614415 Train: epoch: 42 batch: 0/4, loss: 0.002508
2023-06-28 04:41:38.977191 Validation: avg loss: 1.4839, avg acc: 62.8571%
2023-06-28 04:41:53.546677 Train: epoch: 43 batch: 0/4, loss: 0.005065
2023-06-28 04:42:38.615712 Validation: avg loss: 1.4694, avg acc: 62.8571%
2023-06-28 04:42:52.866949 Train: epoch: 44 batch: 0/4, loss: 0.001588
2023-06-28 04:43:37.419490 Validation: avg loss: 1.4595, avg acc: 60.9524%
2023-06-28 04:43:51.441179 Train: epoch: 45 batch: 0/4, loss: 0.002320
2023-06-28 04:44:36.373416 Validation: avg loss: 1.4140, avg acc: 66.6667%
2023-06-28 04:44:50.575468 Train: epoch: 46 batch: 0/4, loss: 0.001628
2023-06-28 04:45:36.094658 Validation: avg loss: 1.3962, avg acc: 66.6667%
2023-06-28 04:45:50.360514 Train: epoch: 47 batch: 0/4, loss: 0.001421
2023-06-28 04:46:35.518807 Validation: avg loss: 1.3719, avg acc: 64.7619%
2023-06-28 04:46:49.783401 Train: epoch: 48 batch: 0/4, loss: 0.001688
2023-06-28 04:47:34.452598 Validation: avg loss: 1.3766, avg acc: 67.6190%
2023-06-28 04:47:48.920135 Train: epoch: 49 batch: 0/4, loss: 0.001522
2023-06-28 04:48:34.555909 Validation: avg loss: 1.3792, avg acc: 67.6190%
2023-06-28 04:48:48.703559 Train: epoch: 50 batch: 0/4, loss: 0.000546
2023-06-28 04:49:34.074328 Validation: avg loss: 1.3799, avg acc: 67.6190%
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
nv_labs=[0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0]
nv_preds=[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1]
dcu_labs=[0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0]
dcu_preds=[0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0]
def sig_detection(preds, labs):
tp = 0
fp = 0
tn = 0
fn = 0
for i in range(0, len(preds)):
if preds[i] == 1 and labs[i] == 1:
tp += 1
elif preds[i] == 1 and labs[i] == 0:
fp += 1
elif preds[i] == 0 and labs[i] == 1:
fn += 1
elif preds[i] == 0 and labs[i] == 0:
tn += 1
acc = ((tp + tn) / (tp + fp + fn + tn))
print('accuracy: ', acc)
print('precision: ', tp / (tp + fp))
print('recall: ', tp / (tp + fn))
if __name__ == '__main__':
sig_detection(dcu_preds, dcu_labs)
sig_detection(nv_preds, nv_labs)
2023-06-27 01:59:32.283091 cuda
2023-06-27 02:00:19.220679 Train: epoch: 1 batch: 0/4, loss: 0.692692
2023-06-27 02:01:45.056517 Validation: avg loss: 0.6880, avg acc: 56.1905%
2023-06-27 02:02:12.228852 Train: epoch: 2 batch: 0/4, loss: 0.658743
2023-06-27 02:03:38.560296 Validation: avg loss: 0.6877, avg acc: 56.1905%
2023-06-27 02:04:05.720454 Train: epoch: 3 batch: 0/4, loss: 0.657871
2023-06-27 02:05:32.169351 Validation: avg loss: 0.6854, avg acc: 56.1905%
2023-06-27 02:05:59.317089 Train: epoch: 4 batch: 0/4, loss: 0.666273
2023-06-27 02:07:25.685815 Validation: avg loss: 0.6877, avg acc: 56.1905%
2023-06-27 02:07:52.791185 Train: epoch: 5 batch: 0/4, loss: 0.645225
2023-06-27 02:09:19.154753 Validation: avg loss: 0.6858, avg acc: 56.1905%
2023-06-27 02:09:46.424731 Train: epoch: 6 batch: 0/4, loss: 0.623888
2023-06-27 02:11:12.928777 Validation: avg loss: 0.6847, avg acc: 56.1905%
2023-06-27 02:11:40.214777 Train: epoch: 7 batch: 0/4, loss: 0.580446
2023-06-27 02:13:06.533535 Validation: avg loss: 0.6864, avg acc: 56.1905%
2023-06-27 02:13:33.676289 Train: epoch: 8 batch: 0/4, loss: 0.567984
2023-06-27 02:15:00.074375 Validation: avg loss: 0.6962, avg acc: 43.8095%
2023-06-27 02:15:27.339969 Train: epoch: 9 batch: 0/4, loss: 0.498715
2023-06-27 02:16:53.824842 Validation: avg loss: 0.7143, avg acc: 43.8095%
2023-06-27 02:17:20.991042 Train: epoch: 10 batch: 0/4, loss: 0.412389
2023-06-27 02:18:47.339751 Validation: avg loss: 0.6938, avg acc: 52.3810%
2023-06-27 02:19:14.535807 Train: epoch: 11 batch: 0/4, loss: 0.431757
2023-06-27 02:20:41.104110 Validation: avg loss: 0.6764, avg acc: 59.0476%
2023-06-27 02:21:08.353358 Train: epoch: 12 batch: 0/4, loss: 0.341980
2023-06-27 02:22:34.747154 Validation: avg loss: 0.6907, avg acc: 55.2381%
2023-06-27 02:23:01.951064 Train: epoch: 13 batch: 0/4, loss: 0.191258
2023-06-27 02:24:28.526972 Validation: avg loss: 0.7229, avg acc: 52.3810%
2023-06-27 02:24:55.693149 Train: epoch: 14 batch: 0/4, loss: 0.197494
2023-06-27 02:26:22.101262 Validation: avg loss: 0.7343, avg acc: 61.9048%
2023-06-27 02:26:49.365855 Train: epoch: 15 batch: 0/4, loss: 0.131904
2023-06-27 02:28:15.880422 Validation: avg loss: 0.8183, avg acc: 60.9524%
2023-06-27 02:28:43.054247 Train: epoch: 16 batch: 0/4, loss: 0.054692
2023-06-27 02:30:09.060479 Validation: avg loss: 0.9153, avg acc: 60.0000%
2023-06-27 02:30:36.137310 Train: epoch: 17 batch: 0/4, loss: 0.050563
2023-06-27 02:32:02.117634 Validation: avg loss: 0.9844, avg acc: 60.9524%
2023-06-27 02:32:29.169731 Train: epoch: 18 batch: 0/4, loss: 0.053166
2023-06-27 02:33:55.137135 Validation: avg loss: 1.0830, avg acc: 60.9524%
2023-06-27 02:34:22.166846 Train: epoch: 19 batch: 0/4, loss: 0.032123
2023-06-27 02:35:48.367994 Validation: avg loss: 1.2188, avg acc: 59.0476%
2023-06-27 02:36:15.464687 Train: epoch: 20 batch: 0/4, loss: 0.011078
2023-06-27 02:37:41.546528 Validation: avg loss: 1.3116, avg acc: 58.0952%
2023-06-27 02:38:08.613742 Train: epoch: 21 batch: 0/4, loss: 0.009437
2023-06-27 02:39:34.745311 Validation: avg loss: 1.3991, avg acc: 60.0000%
2023-06-27 02:40:01.727573 Train: epoch: 22 batch: 0/4, loss: 0.008098
2023-06-27 02:41:27.959071 Validation: avg loss: 1.4563, avg acc: 60.9524%
2023-06-27 02:41:54.947086 Train: epoch: 23 batch: 0/4, loss: 0.005597
2023-06-27 02:43:20.979804 Validation: avg loss: 1.5111, avg acc: 58.0952%
2023-06-27 02:43:48.082680 Train: epoch: 24 batch: 0/4, loss: 0.007035
2023-06-27 02:45:13.880253 Validation: avg loss: 1.5491, avg acc: 58.0952%
2023-06-27 02:45:40.821902 Train: epoch: 25 batch: 0/4, loss: 0.014974
2023-06-27 02:47:06.215747 Validation: avg loss: 1.6083, avg acc: 59.0476%
2023-06-27 02:47:33.049431 Train: epoch: 26 batch: 0/4, loss: 0.009223
2023-06-27 02:48:58.230909 Validation: avg loss: 1.6236, avg acc: 58.0952%
2023-06-27 02:49:25.116434 Train: epoch: 27 batch: 0/4, loss: 0.004450
2023-06-27 02:50:50.249101 Validation: avg loss: 1.6272, avg acc: 60.9524%
2023-06-27 02:51:17.185289 Train: epoch: 28 batch: 0/4, loss: 0.004213
2023-06-27 02:52:42.417771 Validation: avg loss: 1.6348, avg acc: 60.0000%
2023-06-27 02:53:09.392169 Train: epoch: 29 batch: 0/4, loss: 0.007142
2023-06-27 02:54:34.479362 Validation: avg loss: 1.6620, avg acc: 60.0000%
2023-06-27 02:55:01.579140 Train: epoch: 30 batch: 0/4, loss: 0.002469
2023-06-27 02:56:26.774915 Validation: avg loss: 1.6754, avg acc: 58.0952%
2023-06-27 02:56:53.730580 Train: epoch: 31 batch: 0/4, loss: 0.001998
2023-06-27 02:58:18.914844 Validation: avg loss: 1.6636, avg acc: 58.0952%
2023-06-27 02:58:45.838359 Train: epoch: 32 batch: 0/4, loss: 0.004437
2023-06-27 03:00:11.088444 Validation: avg loss: 1.6740, avg acc: 56.1905%
2023-06-27 03:00:38.057626 Train: epoch: 33 batch: 0/4, loss: 0.003358
2023-06-27 03:02:03.267012 Validation: avg loss: 1.6721, avg acc: 58.0952%
2023-06-27 03:02:30.192813 Train: epoch: 34 batch: 0/4, loss: 0.007877
2023-06-27 03:03:55.370666 Validation: avg loss: 1.7256, avg acc: 57.1429%
2023-06-27 03:04:22.330398 Train: epoch: 35 batch: 0/4, loss: 0.002116
2023-06-27 03:05:47.533817 Validation: avg loss: 1.7264, avg acc: 57.1429%
2023-06-27 03:06:14.522816 Train: epoch: 36 batch: 0/4, loss: 0.002035
2023-06-27 03:07:39.757508 Validation: avg loss: 1.7241, avg acc: 58.0952%
2023-06-27 03:08:06.838154 Train: epoch: 37 batch: 0/4, loss: 0.002826
2023-06-27 03:09:31.977029 Validation: avg loss: 1.7297, avg acc: 57.1429%
2023-06-27 03:09:59.061422 Train: epoch: 38 batch: 0/4, loss: 0.003084
2023-06-27 03:11:24.248853 Validation: avg loss: 1.7399, avg acc: 56.1905%
2023-06-27 03:11:51.165653 Train: epoch: 39 batch: 0/4, loss: 0.001958
2023-06-27 03:13:16.253117 Validation: avg loss: 1.7405, avg acc: 57.1429%
2023-06-27 03:13:43.233199 Train: epoch: 40 batch: 0/4, loss: 0.001262
2023-06-27 03:15:08.475732 Validation: avg loss: 1.7326, avg acc: 56.1905%
2023-06-27 03:15:35.474762 Train: epoch: 41 batch: 0/4, loss: 0.001404
2023-06-27 03:17:00.632572 Validation: avg loss: 1.7311, avg acc: 56.1905%
2023-06-27 03:17:27.635665 Train: epoch: 42 batch: 0/4, loss: 0.001106
2023-06-27 03:18:52.923263 Validation: avg loss: 1.7361, avg acc: 56.1905%
2023-06-27 03:19:19.869122 Train: epoch: 43 batch: 0/4, loss: 0.001162
2023-06-27 03:20:44.935747 Validation: avg loss: 1.7377, avg acc: 56.1905%
2023-06-27 03:21:11.870147 Train: epoch: 44 batch: 0/4, loss: 0.001035
2023-06-27 03:22:36.973028 Validation: avg loss: 1.7479, avg acc: 56.1905%
2023-06-27 03:23:03.876731 Train: epoch: 45 batch: 0/4, loss: 0.000927
2023-06-27 03:24:28.880784 Validation: avg loss: 1.7523, avg acc: 57.1429%
2023-06-27 03:24:55.838651 Train: epoch: 46 batch: 0/4, loss: 0.001295
2023-06-27 03:26:20.951645 Validation: avg loss: 1.7522, avg acc: 57.1429%
2023-06-27 03:26:47.910058 Train: epoch: 47 batch: 0/4, loss: 0.000797
2023-06-27 03:28:13.000012 Validation: avg loss: 1.7620, avg acc: 58.0952%
2023-06-27 03:28:40.022628 Train: epoch: 48 batch: 0/4, loss: 0.000734
2023-06-27 03:30:05.314235 Validation: avg loss: 1.7688, avg acc: 57.1429%
2023-06-27 03:30:32.364647 Train: epoch: 49 batch: 0/4, loss: 0.000535
2023-06-27 03:31:57.393118 Validation: avg loss: 1.7718, avg acc: 57.1429%
2023-06-27 03:32:24.461149 Train: epoch: 50 batch: 0/4, loss: 0.000676
2023-06-27 03:33:49.586317 Validation: avg loss: 1.7748, avg acc: 56.1905%
2023-06-27 03:33:49.620538 cuda
2023-06-27 03:34:16.530640 Train: epoch: 1 batch: 0/4, loss: 0.693080
2023-06-27 03:35:41.806763 Validation: avg loss: 0.6870, avg acc: 58.0952%
2023-06-27 03:36:08.742024 Train: epoch: 2 batch: 0/4, loss: 0.677773
2023-06-27 03:37:34.191173 Validation: avg loss: 0.6835, avg acc: 58.0952%
2023-06-27 03:38:01.231267 Train: epoch: 3 batch: 0/4, loss: 0.673670
2023-06-27 03:39:26.649802 Validation: avg loss: 0.6825, avg acc: 58.0952%
2023-06-27 03:39:53.565106 Train: epoch: 4 batch: 0/4, loss: 0.680140
2023-06-27 03:41:18.969671 Validation: avg loss: 0.6821, avg acc: 58.0952%
2023-06-27 03:41:45.893202 Train: epoch: 5 batch: 0/4, loss: 0.631272
2023-06-27 03:43:11.322387 Validation: avg loss: 0.6810, avg acc: 58.0952%
2023-06-27 03:43:38.272657 Train: epoch: 6 batch: 0/4, loss: 0.608761
2023-06-27 03:45:03.721667 Validation: avg loss: 0.6815, avg acc: 58.0952%
2023-06-27 03:45:30.705582 Train: epoch: 7 batch: 0/4, loss: 0.601036
2023-06-27 03:46:56.087300 Validation: avg loss: 0.6981, avg acc: 58.0952%
2023-06-27 03:47:23.023310 Train: epoch: 8 batch: 0/4, loss: 0.603923
2023-06-27 03:48:48.390601 Validation: avg loss: 0.6952, avg acc: 58.0952%
2023-06-27 03:49:15.382933 Train: epoch: 9 batch: 0/4, loss: 0.470182
2023-06-27 03:50:40.781453 Validation: avg loss: 0.6828, avg acc: 58.0952%
2023-06-27 03:51:07.874860 Train: epoch: 10 batch: 0/4, loss: 0.386110
2023-06-27 03:52:33.215767 Validation: avg loss: 0.7465, avg acc: 58.0952%
2023-06-27 03:53:00.156132 Train: epoch: 11 batch: 0/4, loss: 0.397895
2023-06-27 03:54:25.536366 Validation: avg loss: 0.7050, avg acc: 58.0952%
2023-06-27 03:54:52.469428 Train: epoch: 12 batch: 0/4, loss: 0.262515
2023-06-27 03:56:17.898705 Validation: avg loss: 0.7457, avg acc: 57.1429%
2023-06-27 03:56:44.895663 Train: epoch: 13 batch: 0/4, loss: 0.224342
2023-06-27 03:58:10.393033 Validation: avg loss: 0.7781, avg acc: 63.8095%
2023-06-27 03:58:37.311181 Train: epoch: 14 batch: 0/4, loss: 0.134823
2023-06-27 04:00:02.594674 Validation: avg loss: 0.7340, avg acc: 60.9524%
2023-06-27 04:00:29.503775 Train: epoch: 15 batch: 0/4, loss: 0.126792
2023-06-27 04:01:54.777270 Validation: avg loss: 0.7953, avg acc: 60.9524%
2023-06-27 04:02:21.955920 Train: epoch: 16 batch: 0/4, loss: 0.114732
2023-06-27 04:03:48.180689 Validation: avg loss: 0.9175, avg acc: 62.8571%
2023-06-27 04:04:15.437565 Train: epoch: 17 batch: 0/4, loss: 0.040243
2023-06-27 04:05:41.646578 Validation: avg loss: 1.0110, avg acc: 59.0476%
2023-06-27 04:06:08.802477 Train: epoch: 18 batch: 0/4, loss: 0.029593
2023-06-27 04:07:34.864507 Validation: avg loss: 0.9962, avg acc: 60.0000%
2023-06-27 04:08:02.075055 Train: epoch: 19 batch: 0/4, loss: 0.019918
2023-06-27 04:09:28.146785 Validation: avg loss: 1.0330, avg acc: 61.9048%
2023-06-27 04:09:55.344057 Train: epoch: 20 batch: 0/4, loss: 0.013042
2023-06-27 04:11:21.367763 Validation: avg loss: 1.1118, avg acc: 60.9524%
2023-06-27 04:11:48.596764 Train: epoch: 21 batch: 0/4, loss: 0.029912
2023-06-27 04:13:14.732747 Validation: avg loss: 1.2075, avg acc: 60.0000%
2023-06-27 04:13:41.908463 Train: epoch: 22 batch: 0/4, loss: 0.018193
2023-06-27 04:15:07.903724 Validation: avg loss: 1.2723, avg acc: 63.8095%
2023-06-27 04:15:35.079332 Train: epoch: 23 batch: 0/4, loss: 0.012390
2023-06-27 04:17:01.043754 Validation: avg loss: 1.2906, avg acc: 61.9048%
2023-06-27 04:17:28.257118 Train: epoch: 24 batch: 0/4, loss: 0.007024
2023-06-27 04:18:54.271198 Validation: avg loss: 1.3381, avg acc: 62.8571%
2023-06-27 04:19:21.468763 Train: epoch: 25 batch: 0/4, loss: 0.014566
2023-06-27 04:20:47.772050 Validation: avg loss: 1.4036, avg acc: 61.9048%
2023-06-27 04:21:15.024444 Train: epoch: 26 batch: 0/4, loss: 0.003964
2023-06-27 04:22:41.461127 Validation: avg loss: 1.4325, avg acc: 62.8571%
2023-06-27 04:23:08.790864 Train: epoch: 27 batch: 0/4, loss: 0.004086
2023-06-27 04:24:35.101757 Validation: avg loss: 1.4324, avg acc: 61.9048%
2023-06-27 04:25:02.417699 Train: epoch: 28 batch: 0/4, loss: 0.008229
2023-06-27 04:26:28.885759 Validation: avg loss: 1.4633, avg acc: 61.9048%
2023-06-27 04:26:56.150808 Train: epoch: 29 batch: 0/4, loss: 0.008524
2023-06-27 04:28:22.438783 Validation: avg loss: 1.5122, avg acc: 60.9524%
2023-06-27 04:28:49.761823 Train: epoch: 30 batch: 0/4, loss: 0.004061
2023-06-27 04:30:16.127859 Validation: avg loss: 1.5431, avg acc: 60.9524%
2023-06-27 04:30:43.331688 Train: epoch: 31 batch: 0/4, loss: 0.007024
2023-06-27 04:32:09.483676 Validation: avg loss: 1.5391, avg acc: 61.9048%
2023-06-27 04:32:36.662683 Train: epoch: 32 batch: 0/4, loss: 0.002247
2023-06-27 04:34:02.664147 Validation: avg loss: 1.5419, avg acc: 61.9048%
2023-06-27 04:34:29.873437 Train: epoch: 33 batch: 0/4, loss: 0.002192
2023-06-27 04:35:55.931510 Validation: avg loss: 1.5424, avg acc: 60.9524%
2023-06-27 04:36:23.090882 Train: epoch: 34 batch: 0/4, loss: 0.001588
2023-06-27 04:37:49.141448 Validation: avg loss: 1.5662, avg acc: 60.9524%
2023-06-27 04:38:16.305874 Train: epoch: 35 batch: 0/4, loss: 0.001755
2023-06-27 04:39:42.380459 Validation: avg loss: 1.5682, avg acc: 60.9524%
2023-06-27 04:40:09.618126 Train: epoch: 36 batch: 0/4, loss: 0.001248
2023-06-27 04:41:35.701780 Validation: avg loss: 1.5553, avg acc: 60.9524%
2023-06-27 04:42:02.954181 Train: epoch: 37 batch: 0/4, loss: 0.001146
2023-06-27 04:43:29.042723 Validation: avg loss: 1.5398, avg acc: 61.9048%
2023-06-27 04:43:56.233850 Train: epoch: 38 batch: 0/4, loss: 0.001596
2023-06-27 04:45:22.520642 Validation: avg loss: 1.5308, avg acc: 61.9048%
2023-06-27 04:45:49.661671 Train: epoch: 39 batch: 0/4, loss: 0.003090
2023-06-27 04:47:15.754206 Validation: avg loss: 1.5261, avg acc: 62.8571%
2023-06-27 04:47:42.930905 Train: epoch: 40 batch: 0/4, loss: 0.001614
2023-06-27 04:49:09.075421 Validation: avg loss: 1.5337, avg acc: 62.8571%
2023-06-27 04:49:36.347485 Train: epoch: 41 batch: 0/4, loss: 0.001224
2023-06-27 04:51:02.533730 Validation: avg loss: 1.5332, avg acc: 60.9524%
2023-06-27 04:51:29.771878 Train: epoch: 42 batch: 0/4, loss: 0.001751
2023-06-27 04:52:55.889034 Validation: avg loss: 1.5426, avg acc: 60.0000%
2023-06-27 04:53:23.095702 Train: epoch: 43 batch: 0/4, loss: 0.000911
2023-06-27 04:54:49.249387 Validation: avg loss: 1.5437, avg acc: 60.0000%
2023-06-27 04:55:16.344639 Train: epoch: 44 batch: 0/4, loss: 0.000856
2023-06-27 04:56:42.462039 Validation: avg loss: 1.5554, avg acc: 60.0000%
2023-06-27 04:57:09.636866 Train: epoch: 45 batch: 0/4, loss: 0.000915
2023-06-27 04:58:35.815228 Validation: avg loss: 1.5604, avg acc: 60.9524%
2023-06-27 04:59:02.971681 Train: epoch: 46 batch: 0/4, loss: 0.000812
2023-06-27 05:00:29.061047 Validation: avg loss: 1.5614, avg acc: 60.9524%
2023-06-27 05:00:56.206586 Train: epoch: 47 batch: 0/4, loss: 0.000677
2023-06-27 05:02:22.282724 Validation: avg loss: 1.5675, avg acc: 61.9048%
2023-06-27 05:02:49.470639 Train: epoch: 48 batch: 0/4, loss: 0.000872
2023-06-27 05:04:15.620676 Validation: avg loss: 1.5682, avg acc: 60.9524%
2023-06-27 05:04:42.754795 Train: epoch: 49 batch: 0/4, loss: 0.000688
2023-06-27 05:06:08.739963 Validation: avg loss: 1.5752, avg acc: 61.9048%
2023-06-27 05:06:35.853730 Train: epoch: 50 batch: 0/4, loss: 0.000888
2023-06-27 05:08:01.872036 Validation: avg loss: 1.5715, avg acc: 61.9048%
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment