model.py 9.76 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init


def _make_divisible(v, divisor, min_value=None):
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    :param v:
    :param divisor:
    :param min_value:
    :return:
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


def channel_shuffle(x, groups):
    batchsize, num_channels, height, width = x.data.size()
    assert (num_channels % groups == 0)
    channels_per_group = num_channels // groups
    # reshape
    x = x.view(batchsize, groups, channels_per_group, height, width)

    # transpose
    # - contiguous() required if transpose() is used before view().
    #   See https://github.com/pytorch/pytorch/issues/764
    x = torch.transpose(x, 1, 2).contiguous()

    # flatten
    x = x.view(batchsize, -1, height, width)

    return x


class SELayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y


class BasicUnit(nn.Module):
    def __init__(self, inplanes, outplanes, c_tag=0.5, activation=nn.ReLU, SE=False, residual=False, groups=2):
        super(BasicUnit, self).__init__()
        self.left_part = round(c_tag * inplanes)
        self.right_part_in = inplanes - self.left_part
        self.right_part_out = outplanes - self.left_part
        self.conv1 = nn.Conv2d(self.right_part_in, self.right_part_out, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(self.right_part_out)
        self.conv2 = nn.Conv2d(self.right_part_out, self.right_part_out, kernel_size=3, padding=1, bias=False,
                               groups=self.right_part_out)
        self.bn2 = nn.BatchNorm2d(self.right_part_out)
        self.conv3 = nn.Conv2d(self.right_part_out, self.right_part_out, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.right_part_out)
        self.activation = activation(inplace=True)

        self.inplanes = inplanes
        self.outplanes = outplanes
        self.residual = residual
        self.groups = groups
        self.SE = SE
        if self.SE:
            self.SELayer = SELayer(self.right_part_out, 2)  # TODO

    def forward(self, x):
        left = x[:, :self.left_part, :, :]
        right = x[:, self.left_part:, :, :]
        out = self.conv1(right)
        out = self.bn1(out)
        out = self.activation(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out = self.conv3(out)
        out = self.bn3(out)
        out = self.activation(out)

        if self.SE:
            out = self.SELayer(out)
        if self.residual and self.inplanes == self.outplanes:
            out += right

        return channel_shuffle(torch.cat((left, out), 1), self.groups)


class DownsampleUnit(nn.Module):
    def __init__(self, inplanes, c_tag=0.5, activation=nn.ReLU, groups=2):
        super(DownsampleUnit, self).__init__()

        self.conv1r = nn.Conv2d(inplanes, inplanes, kernel_size=1, bias=False)
        self.bn1r = nn.BatchNorm2d(inplanes)
        self.conv2r = nn.Conv2d(inplanes, inplanes, kernel_size=3, stride=2, padding=1, bias=False, groups=inplanes)
        self.bn2r = nn.BatchNorm2d(inplanes)
        self.conv3r = nn.Conv2d(inplanes, inplanes, kernel_size=1, bias=False)
        self.bn3r = nn.BatchNorm2d(inplanes)

        self.conv1l = nn.Conv2d(inplanes, inplanes, kernel_size=3, stride=2, padding=1, bias=False, groups=inplanes)
        self.bn1l = nn.BatchNorm2d(inplanes)
        self.conv2l = nn.Conv2d(inplanes, inplanes, kernel_size=1, bias=False)
        self.bn2l = nn.BatchNorm2d(inplanes)
        self.activation = activation(inplace=True)

        self.groups = groups
        self.inplanes = inplanes

    def forward(self, x):
        out_r = self.conv1r(x)
        out_r = self.bn1r(out_r)
        out_r = self.activation(out_r)

        out_r = self.conv2r(out_r)
        out_r = self.bn2r(out_r)

        out_r = self.conv3r(out_r)
        out_r = self.bn3r(out_r)
        out_r = self.activation(out_r)

        out_l = self.conv1l(x)
        out_l = self.bn1l(out_l)

        out_l = self.conv2l(out_l)
        out_l = self.bn2l(out_l)
        out_l = self.activation(out_l)

        return channel_shuffle(torch.cat((out_r, out_l), 1), self.groups)


class ShuffleNetV2(nn.Module):
    """ShuffleNetV2 implementation.
    """

    def __init__(self, scale=1.0, in_channels=3, c_tag=0.5, num_classes=1000, activation=nn.ReLU,
                 SE=False, residual=False, groups=2):
        """
        ShuffleNetV2 constructor
        :param scale:
        :param in_channels:
        :param c_tag:
        :param num_classes:
        :param activation:
        :param SE:
        :param residual:
        :param groups:
        """

        super(ShuffleNetV2, self).__init__()

        self.scale = scale
        self.c_tag = c_tag
        self.residual = residual
        self.SE = SE
        self.groups = groups

        self.activation_type = activation
        self.activation = activation(inplace=True)
        self.num_classes = num_classes

        self.num_of_channels = {0.5: [24, 48, 96, 192, 1024], 1: [24, 116, 232, 464, 1024],
                                1.5: [24, 176, 352, 704, 1024], 2: [24, 244, 488, 976, 2048]}
        self.c = [_make_divisible(chan, groups) for chan in self.num_of_channels[scale]]
        self.n = [3, 8, 3]  # TODO: should be [3,7,3]
        self.conv1 = nn.Conv2d(in_channels, self.c[0], kernel_size=3, bias=False, stride=2, padding=1)
        self.bn1 = nn.BatchNorm2d(self.c[0])
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2)
        self.shuffles = self._make_shuffles()

        self.conv_last = nn.Conv2d(self.c[-2], self.c[-1], kernel_size=1, bias=False)
        self.bn_last = nn.BatchNorm2d(self.c[-1])
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Linear(self.c[-1], self.num_classes)
        self.init_params()

    def init_params(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def _make_stage(self, inplanes, outplanes, n, stage):
        modules = OrderedDict()
        stage_name = "ShuffleUnit{}".format(stage)

        # First module is the only one utilizing stride
        first_module = DownsampleUnit(inplanes=inplanes, activation=self.activation_type, c_tag=self.c_tag,
                                      groups=self.groups)
        modules["DownsampleUnit"] = first_module
        second_module = BasicUnit(inplanes=inplanes * 2, outplanes=outplanes, activation=self.activation_type,
                                  c_tag=self.c_tag, SE=self.SE, residual=self.residual, groups=self.groups)
        modules[stage_name + "_{}".format(0)] = second_module
        # add more LinearBottleneck depending on number of repeats
        for i in range(n - 1):
            name = stage_name + "_{}".format(i + 1)
            module = BasicUnit(inplanes=outplanes, outplanes=outplanes, activation=self.activation_type,
                               c_tag=self.c_tag, SE=self.SE, residual=self.residual, groups=self.groups)
            modules[name] = module

        return nn.Sequential(modules)

    def _make_shuffles(self):
        modules = OrderedDict()
        stage_name = "ShuffleConvs"

        for i in range(len(self.c) - 2):
            name = stage_name + "_{}".format(i)
            module = self._make_stage(inplanes=self.c[i], outplanes=self.c[i + 1], n=self.n[i], stage=i)
            modules[name] = module

        return nn.Sequential(modules)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.activation(x)
        x = self.maxpool(x)

        x = self.shuffles(x)
        x = self.conv_last(x)
        x = self.bn_last(x)
        x = self.activation(x)

        # average pooling layer
        x = self.avgpool(x)

        # flatten for input to fully-connected layer
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return F.log_softmax(x, dim=1)


if __name__ == "__main__":
    """Testing
    """
    model1 = ShuffleNetV2()
    print(model1)
    model2 = ShuffleNetV2(scale=0.5, in_channels=3, c_tag=0.5, num_classes=1000, activation=nn.ReLU,
                          SE=False, residual=False)
    print(model2)
    model3 = ShuffleNetV2(in_channels=2, num_classes=10)
    print(model3)
    x = torch.randn(1, 2, 224, 224)
    print(model3(x))
    model4 = ShuffleNetV2( num_classes=10, groups=3, c_tag=0.2)
    print(model4)
    model4_size = 769
    x2 = torch.randn(1, 3, model4_size, model4_size, )
    print(model4(x2))
    model5 = ShuffleNetV2(scale=2.0,num_classes=10, SE=True, residual=True)
    x3 = torch.randn(1, 3, 196, 196)
    print(model5(x3))