data.py 1.9 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os

import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
from torchvision import datasets, transforms

__imagenet_stats = {'mean': [0.485, 0.456, 0.406],
                    'std': [0.229, 0.224, 0.225]}


def inception_preproccess(input_size, normalize=__imagenet_stats):
    return transforms.Compose([
        transforms.RandomResizedCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(**normalize)
    ])


def scale_crop(input_size, scale_size=None, normalize=__imagenet_stats):
    t_list = [
        transforms.CenterCrop(input_size),
        transforms.ToTensor(),
        transforms.Normalize(**normalize),
    ]
    if scale_size != input_size:
        t_list = [transforms.Resize(scale_size)] + t_list

    return transforms.Compose(t_list)


def get_transform(augment=True, input_size=224):
    normalize = __imagenet_stats
    scale_size = int(input_size / 0.875)
    if augment:
        return inception_preproccess(input_size=input_size, normalize=normalize)
    else:
        return scale_crop(input_size=input_size, scale_size=scale_size, normalize=normalize)


def get_loaders(dataroot, val_batch_size, train_batch_size, input_size, workers):
    val_data = datasets.ImageFolder(root=os.path.join(dataroot, 'val'), transform=get_transform(False, input_size))
    val_loader = torch.utils.data.DataLoader(val_data, batch_size=val_batch_size, shuffle=False, num_workers=workers,
                                             pin_memory=True)

    train_data = datasets.ImageFolder(root=os.path.join(dataroot, 'train'),
                                      transform=get_transform(input_size=input_size))
    train_loader = torch.utils.data.DataLoader(train_data, batch_size=train_batch_size, shuffle=True,
                                               num_workers=workers, pin_memory=True)
    return train_loader, val_loader