ShuffleNetV2Driver_multi.py 5.43 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
from fitlog import FitLog
from ShuffleNet.model import ShuffleNetV2
from iframe_feeder import iframe_feeder
from torch.utils.data import DataLoader
import torch
from tqdm import tqdm, trange
from torch.optim.lr_scheduler import MultiStepLR
import torch.nn as nn


class ShuffleNetV2Driver:
    def __init__(self, featd, feati, normd, normi, lab):
        self.batchsize = 256
        self.lr = 0.01
        self.momentum = 0.9
        self.decay = 4e-5
        self.gamma = 0.1
        self.schedule = [200, 300]

        self.local_rank = int(os.getenv("LOCAL_RANK", -1))
        self.RANK = int(os.getenv("RANK", -1))

        self.feeder = iframe_feeder(featd, feati, lab, normd, normi)
        self.feeder.set_mode('train')

        if self.local_rank >= 0:
            self.device = torch.device('cuda', self.local_rank)
        else:
            self.device = torch.device('cuda')

        if self.local_rank >= 0:
            self.sampler = torch.utils.data.distributed.DistributedSampler(self.feeder)
            self.loader = DataLoader(self.feeder, batch_size=self.batchsize,sampler=self.sampler, shuffle=False)
        else:
            self.loader = DataLoader(self.feeder, batch_size=self.batchsize, shuffle=True, num_workers=0)





        #self.feeder = iframe_feeder(featd, feati, lab, normd, normi)
        #self.feeder.set_mode('train')

        self.model = ShuffleNetV2(num_classes=2, scale=0.5, SE=True, residual=True)#torchvision.models.ShuffleNetV2(num_classes=2)#
        self.fitlog = FitLog()
        self.detail_log = FitLog(prefix='dt_')
        #self.device = self.get_device() #torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        print("device info: " + str(self.device))

        self.optimizer = torch.optim.SGD(self.model.parameters(),\
            self.lr, momentum=self.momentum, weight_decay=self.decay,\
            nesterov=True)
        self.scheduler = MultiStepLR(self.optimizer, self.schedule, self.gamma)
        self.criterion = torch.nn.CrossEntropyLoss()
        #self.loader = DataLoader(self.feeder, batch_size=self.batchsize, shuffle=True, num_workers=0)

        self.print_interval = 25
        self.n_epoch = 200
        print('self_device:',self.device)
        print('self_local_rank:',self.local_rank)
        self.model.to(self.device)
        self.model = nn.parallel.DistributedDataParallel(self.model, device_ids=[self.local_rank],output_device=self.local_rank, find_unused_parameters=True)

    def get_device(self):
        device_mlu = None
        device_gpu = None
        try:
            # device_mlu = torch.device('mlu')
            device_gpu = torch.device('cuda')
        except Exception as err:
            print(err)
        if device_mlu:
            self.fitlog.append('mlu', True, True)
            return device_mlu
        elif device_gpu:
            self.fitlog.append('cuda', True, True)
            return device_gpu
        else:
            self.fitlog.append('cpu', True, True)
            return torch.device('cpu')

    def train(self, epoch):
        self.feeder.set_mode('train')
        self.model.train()
        nbatch = len(self.loader)
        print('nbatch:',nbatch)
        for batch_idx, (feats, labs) in enumerate(tqdm(self.loader)):
            feats = feats.to(self.device)
            labs = labs.to(self.device)
            self.optimizer.zero_grad()
            res = self.model(feats)
            loss = self.criterion(res, labs)
            loss.backward()
            self.optimizer.step()
            
            if batch_idx % self.print_interval == 0:
                xstr = "Train: epoch: {} batch: {}/{}, loss: {:.6f}".format(epoch, batch_idx, nbatch, loss)
                tqdm.write(xstr)
                self.fitlog.append(xstr, True, True)
                
    def validate(self):
        self.feeder.set_mode('test')
        self.model.eval()
        loss_val = 0
        n_correct = 0
        n_total = 0

        for batch_idx, (feats, labs) in enumerate(tqdm(self.loader)):
            feats = feats.to(self.device)
            labs = labs.to(self.device)
            with torch.no_grad():
                res = self.model(feats)
                loss_val += self.criterion(res, labs).item()
                _, pred = res.max(1)
                n_correct += pred.eq(labs).sum().item()
                n_total += labs.shape[0]
        
        loss_val = loss_val / len(self.loader)
        acc = n_correct / n_total * 100

        self.detail_log.append(str(labs.tolist()))
        self.detail_log.append(str(pred.tolist()))

        xstr = "Validation: avg loss: {:.4f}, avg acc: {:.4f}%".format(loss_val, acc)
        tqdm.write(xstr)
        self.fitlog.append(xstr, True, True)

    def finish(self):
        self.feeder.finish()
        self.fitlog.close()
        self.detail_log.close()

    def run(self):
        for i in range(1, self.n_epoch + 1):
            self.train(i)
            self.validate()
        

if __name__ == "__main__":
    datafolder = "data/"
    torch.distributed.init_process_group(backend="nccl")
    driver = ShuffleNetV2Driver(datafolder + "s2_ftimgd",\
                                datafolder + "s2_ftimgi",\
                                datafolder + "s2_normd",\
                                datafolder + "s2_normi",\
                                datafolder + "s2_label.json")
    driver.run()
    driver.finish()