README.md 3.58 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
# SeResnet50

sunxx1's avatar
sunxx1 committed
3
4
5
6
7
8
## 论文

Squeeze-and-Excitation Networks

- https://arxiv.org/pdf/1709.01507.pdf

sunxx1's avatar
sunxx1 committed
9
## 模型结构
sunxx1's avatar
sunxx1 committed
10
11
12

SE-ResNet50是一种基于残差网络(ResNet)和注意力机制(SE)的深度卷积神经网络模型,是由微软亚洲研究院提出的,是一种高效、快速、准确的图像分类模型,具有广泛的应用前景。

sunxx1's avatar
sunxx1 committed
13
![20231124110818](./images/20231124110818.png)
sunxx1's avatar
sunxx1 committed
14

sunxx1's avatar
sunxx1 committed
15
## 算法原理
sunxx1's avatar
sunxx1 committed
16

sunxx1's avatar
sunxx1 committed
17
Seresnet50的整体结构包括基础网络部分和Squeeze-and-Excitation(SE)模块。
sunxx1's avatar
sunxx1 committed
18

sunxx1's avatar
sunxx1 committed
19
![20231124111112](./images/20231124111112.png)
sunxx1's avatar
sunxx1 committed
20

sunxx1's avatar
sunxx1 committed
21
## 环境配置
sunxx1's avatar
sunxx1 committed
22

sunxx1's avatar
sunxx1 committed
23
### Docker**(方法一)**
sunxx1's avatar
sunxx1 committed
24

sunxx1's avatar
sunxx1 committed
25
26
27
28
```python
git clone --recursive http://developer.hpccube.com/codes/modelzoo/seresnet50_mmcv.git
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-centos7.6-dtk-22.10.1-py37-latest
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
dcuai's avatar
dcuai committed
29
docker run --shm-size 10g --network=host --name=seresnet50 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/seresnet50_mmcv :/home/seresnet50_mmcv -it <your IMAGE ID> bash
sunxx1's avatar
sunxx1 committed
30
31
32
33
34
35
36
37
38
39

cd seresnet50_mmcv/mmclassification-mmcv
pip install -r requirements.txt
```

### Dockerfile(方法二)

```plaintext
cd seresnet50_mmcv/docker
docker build --no-cache -t seresnet50_mmcv:latest .
dcuai's avatar
dcuai committed
40
docker run --rm --shm-size 10g --network=host --name=seresnet50 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/../../seresnet50_mmcv:/home/seresnet50_mmcv -it <your IMAGE ID> bash
sunxx1's avatar
sunxx1 committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt
```

### Anaconda(方法三)

1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/

```plaintext
DTK驱动:dtk22.10.1
python:python3.7
torch:1.10.0
torchvision:0.10.0
mmcv:1.6.1
Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应
```

2、其它非特殊库参照requirements.txt安装
sunxx1's avatar
sunxx1 committed
58

sunxx1's avatar
sunxx1 committed
59
```plaintext
sunxx1's avatar
sunxx1 committed
60
61
pip install -r requirements.txt
```
sunxx1's avatar
sunxx1 committed
62
63
64
65

## 数据集

在本测试中可以使用ImageNet数据集。
zwq330205812's avatar
zwq330205812 committed
66
[快速下载地址](http://113.200.138.88:18080/aidatasets/project-dependency/imagenet-2012)
sunxx1's avatar
sunxx1 committed
67
68
下载ImageNet数据集:https://image-net.org/

dcuai's avatar
dcuai committed
69
70
71
72
73
74
下载val数据:链接:https://pan.baidu.com/s/1oXsmsYahGVG3uOZ8e535LA?pwd=c3bc 提取码:c3bc 替换ImageNet数据集中的val目录

或者从SCNet下载[ImageNet](http://113.200.138.88:18080/aidatasets/project-dependency/imagenet-2012)
- ImageNet数据集中的val部分[val](http://113.200.138.88:18080/aidatasets/project-dependency/shufflenet_v2_mmcv)

处理后的数据结构如下:
sunxx1's avatar
sunxx1 committed
75

sunxx1's avatar
sunxx1 committed
76
```
dcuai's avatar
dcuai committed
77
78
79
80
81
82
83
84
85
data
    ├──imagenet
        ├── meta
            ├──val.txt
            ├──train.txt
            ...
        ├── train
        ├── val
  
sunxx1's avatar
sunxx1 committed
86
```
sunxx1's avatar
sunxx1 committed
87

sunxx1's avatar
sunxx1 committed
88
## 训练
sunxx1's avatar
sunxx1 committed
89
90
91

将训练数据解压到data目录下。

sunxx1's avatar
sunxx1 committed
92
### 单机8卡
sunxx1's avatar
sunxx1 committed
93
94
95

    ./seresnet50.sh

dcuai's avatar
dcuai committed
96
97
98
99
100
## result

![img](https://developer.hpccube.com/codes/modelzoo/vit_pytorch/-/raw/master/image/README/1695381570003.png)

### 精度
sunxx1's avatar
sunxx1 committed
101
102
103

测试数据使用的是ImageNet数据集,使用的加速卡是DCU Z100L。

sunxx1's avatar
sunxx1 committed
104
105
106
107
| 卡数 |          精度           |
| :--: | :---------------------: |
|  8   | top1:0.7754;top5:0.9373 |

sunxx1's avatar
sunxx1 committed
108
109
110
111
112
113
114
115
116
117
## 应用场景

### 算法类别

图像分类

### 热点行业

制造,能源,交通,网安

dcuai's avatar
dcuai committed
118
## 源码仓库及问题反馈
sunxx1's avatar
sunxx1 committed
119

sunxx1's avatar
sunxx1 committed
120
https://developer.hpccube.com/codes/modelzoo/seresnet50_mmcv
sunxx1's avatar
sunxx1 committed
121

dcuai's avatar
dcuai committed
122
## 参考资料
sunxx1's avatar
sunxx1 committed
123

dcuai's avatar
dcuai committed
124
https://github.com/open-mmlab/mmpretrain