"docs/source/vscode:/vscode.git/clone" did not exist on "c5e48eb4f0b4b87322a48f9e7cfb4aef02b2a016"
Commit a6df64fb authored by Rayyyyy's avatar Rayyyyy
Browse files

Update README

parent 3a094e93
......@@ -20,29 +20,25 @@
-v 路径、docker_name和imageID根据实际情况修改
### Docker(方法一)
```bash
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-centos7.6-dtk24.04-py310
docker run -it -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal/:/opt/hyhal/:ro --shm-size=32G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash
cd /your_code_path/sentence-bert_pytorch
pip install -e .
pip install -r requirements.txt
pip install -U huggingface_hub hf_transfer
export HF_ENDPOINT=https://hf-mirror.com
```
### Dockerfile(方法二)
```bash
cd ./docker
cp ../requirements.txt requirements.txt
docker build --no-cache -t sbert:latest .
docker run -it -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal/:/opt/hyhal/:ro --shm-size=32G --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name docker_name imageID bash
cd /your_code_path/sentence-bert_pytorch
pip install -e .
pip install -r requirements.txt
pip install -U huggingface_hub hf_transfer
export HF_ENDPOINT=https://hf-mirror.com
```
......@@ -54,6 +50,7 @@ export HF_ENDPOINT=https://hf-mirror.com
DTK软件栈:dtk24.04
python:python3.10
torch:2.1.0
torchvision: 0.16.0
```
Tips:以上dtk软件栈、python、torch等DCU相关工具版本需要严格一一对应
......@@ -62,7 +59,7 @@ Tips:以上dtk软件栈、python、torch等DCU相关工具版本需要严格
```bash
cd /your_code_path/sentence-bert_pytorch
pip install -e .
pip install -r requirements.txt
pip install -U huggingface_hub hf_transfer
export HF_ENDPOINT=https://hf-mirror.com
```
......@@ -97,11 +94,11 @@ bash finetune.sh
### 单机单卡
- 训练
```bash
python training_stsbenchmark.py
python training_stsbenchmark.py --train_batch_size 64 --num_epochs 5
```
- 微调
```bash
python training_stsbenchmark_continue_training.py
python training_stsbenchmark_continue_training.py --train_batch_size 64 --num_epochs 5
```
## 推理
......@@ -109,7 +106,7 @@ python training_stsbenchmark_continue_training.py
2. 执行以下命令,测试数据默认为`./datasets/simple_wikipedia_v1/simple_wiki_pair.txt`,可修改`--data_path`参数为其他待测文件地址,文件内容格式请参考[simple_wiki_pair.txt](./datasets/simple_wikipedia_v1/simple_wiki_pair.txt)
```bash
python infer.py --data_path ./datasets/simple_wikipedia_v1/simple_wiki_pair.txt --model_name_or_path all-MiniLM-L6-v2
python infer.py --data_path ./dataset/simple_wikipedia_v1/simple_wiki_pair.txt --model_name_or_path all-MiniLM-L6-v2
```
## result
......@@ -119,7 +116,11 @@ python infer.py --data_path ./datasets/simple_wikipedia_v1/simple_wiki_pair.txt
</div>
### 精度
暂无
在sts-test数据集上评估模型,Cosine-Similarity得分对比
| device | backbone | epoch | Pearson | Spearman |
| :------: | :------: | :------: | :------: | :------: |
| K100 | bert-base-uncased | 5 | 0.8500 | 0.8460 |
| A800 | bert-base-uncased | 5 | 0.8449 | 0.8385 |
## 应用场景
### 算法类别
......
......@@ -7,4 +7,4 @@ export USE_MIOPEN_BATCHNORM=1
echo "Training start ..."
torchrun --nproc_per_node=4 training_stsbenchmark_continue_training.py --train_batch_size 16 --num_epochs 5
torchrun --nproc_per_node=4 training_stsbenchmark_continue_training.py --train_batch_size 64 --num_epochs 5
......@@ -6,4 +6,5 @@ scipy
huggingface-hub>=0.15.1
Pillow
datasets
accelerate>=0.20.3
\ No newline at end of file
accelerate>=0.20.3
pandas==2.2.2
\ No newline at end of file
......@@ -7,4 +7,4 @@ export USE_MIOPEN_BATCHNORM=1
echo "Training start ..."
torchrun --nproc_per_node=4 training_stsbenchmark.py --train_batch_size 16 --num_epochs 5
torchrun --nproc_per_node=4 training_stsbenchmark.py --train_batch_size 64 --num_epochs 5
......@@ -19,8 +19,8 @@ parser.add_argument('--num_epochs', type=int, default=10)
parser.add_argument('--model_name_or_path', type=str, default="bert-base-uncased")
parser.add_argument('--save_root_path', type=str, default="output", help='Model output folder')
parser.add_argument('--lr', default=2e-05)
parser.add_argument('--eval_steps', type=int, default=100)
parser.add_argument('--save_steps', type=int, default=100)
parser.add_argument('--eval_steps', type=int, default=-1)
parser.add_argument('--save_steps', type=int, default=-1)
parser.add_argument('--save_total_limit', type=int, default=2)
parser.add_argument('--logging_steps', type=int, default=10)
args = parser.parse_args()
......
"""
This example loads the pre-trained SentenceTransformer model 'nli-distilroberta-base-v2' from Hugging Face.
It then fine-tunes this model for some epochs on the STS benchmark dataset.
Note: In this example, you must specify a SentenceTransformer model.
If you want to fine-tune a huggingface/transformers model like bert-base-uncased, see training_nli.py and training_stsbenchmark.py
"""
import logging
import argparse
from datetime import datetime
......@@ -26,8 +18,8 @@ parser.add_argument('--num_epochs', type=int, default=10)
parser.add_argument('--model_name_or_path', type=str, default="all-MiniLM-L6-v2")
parser.add_argument('--save_root_path', type=str, default="output", help='Model output folder')
parser.add_argument('--lr', default=2e-05)
parser.add_argument('--eval_steps', type=int, default=100)
parser.add_argument('--save_steps', type=int, default=100)
parser.add_argument('--eval_steps', type=int, default=-1)
parser.add_argument('--save_steps', type=int, default=-1)
parser.add_argument('--save_total_limit', type=int, default=2)
parser.add_argument('--logging_steps', type=int, default=10)
args = parser.parse_args()
......@@ -37,7 +29,7 @@ model_name = args.model_name_or_path
train_batch_size = args.train_batch_size
num_epochs = args.num_epochs
output_dir = (
args.save_root_path + "training_stsbenchmark_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
args.save_root_path + "/training_stsbenchmark_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
)
# 1. Here we define our SentenceTransformer model.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment