training_stsbenchmark_continue_training.py 4.18 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
import logging
import argparse
from datetime import datetime
Rayyyyy's avatar
Update  
Rayyyyy committed
4
5
6

from datasets import load_dataset
from sentence_transformers import SentenceTransformer, losses
Rayyyyy's avatar
Rayyyyy committed
7
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
Rayyyyy's avatar
Update  
Rayyyyy committed
8
9
10
from sentence_transformers.similarity_functions import SimilarityFunction
from sentence_transformers.trainer import SentenceTransformerTrainer
from sentence_transformers.training_args import SentenceTransformerTrainingArguments
Rayyyyy's avatar
Rayyyyy committed
11

Rayyyyy's avatar
Update  
Rayyyyy committed
12
13
# Set the log level to INFO to get more information
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
Rayyyyy's avatar
Rayyyyy committed
14
15
16
17
18

parser = argparse.ArgumentParser()
parser.add_argument('--train_batch_size', type=int, default=16)
parser.add_argument('--num_epochs', type=int, default=10)
parser.add_argument('--model_name_or_path', type=str, default="all-MiniLM-L6-v2")
Rayyyyy's avatar
Rayyyyy committed
19
parser.add_argument('--save_root_path', type=str, default="output", help='Model output folder')
Rayyyyy's avatar
Rayyyyy committed
20
parser.add_argument('--lr', default=2e-05)
Rayyyyy's avatar
Rayyyyy committed
21
22
parser.add_argument('--eval_steps', type=int, default=-1)
parser.add_argument('--save_steps', type=int, default=-1)
Rayyyyy's avatar
Update  
Rayyyyy committed
23
24
parser.add_argument('--save_total_limit', type=int, default=2)
parser.add_argument('--logging_steps', type=int, default=10)
Rayyyyy's avatar
Rayyyyy committed
25
26
args = parser.parse_args()

Rayyyyy's avatar
Update  
Rayyyyy committed
27
28
29
30
31
# You can specify any Sentence Transformer model here, for example all-mpnet-base-v2, all-MiniLM-L6-v2, mixedbread-ai/mxbai-embed-large-v1
model_name = args.model_name_or_path
train_batch_size = args.train_batch_size
num_epochs = args.num_epochs
output_dir = (
Rayyyyy's avatar
Rayyyyy committed
32
    args.save_root_path + "/training_stsbenchmark_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
Rayyyyy's avatar
Update  
Rayyyyy committed
33
)
Rayyyyy's avatar
Rayyyyy committed
34

Rayyyyy's avatar
Update  
Rayyyyy committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# 1. Here we define our SentenceTransformer model.
model = SentenceTransformer(model_name)

# 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb
train_dataset = load_dataset("sentence-transformers/stsb", split="train")
eval_dataset = load_dataset("sentence-transformers/stsb", split="validation")
test_dataset = load_dataset("sentence-transformers/stsb", split="test")
logging.info(train_dataset)

# 3. Define our training loss
# CosineSimilarityLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) needs two text columns and one
# similarity score column (between 0 and 1)
train_loss = losses.CosineSimilarityLoss(model=model)
# train_loss = losses.CoSENTLoss(model=model)

# 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss.
dev_evaluator = EmbeddingSimilarityEvaluator(
    sentences1=eval_dataset["sentence1"],
    sentences2=eval_dataset["sentence2"],
    scores=eval_dataset["score"],
    main_similarity=SimilarityFunction.COSINE,
    name="sts-dev",
)
Rayyyyy's avatar
Rayyyyy committed
58

Rayyyyy's avatar
Update  
Rayyyyy committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# 5. Define the training arguments
args = SentenceTransformerTrainingArguments(
    # Required parameter:
    output_dir=output_dir,
    # Optional training parameters:
    num_train_epochs=num_epochs,
    per_device_train_batch_size=train_batch_size,
    per_device_eval_batch_size=train_batch_size,
    warmup_ratio=0.1,
    fp16=True,  # Set to False if you get an error that your GPU can't run on FP16
    bf16=False,  # Set to True if you have a GPU that supports BF16
    # Optional tracking/debugging parameters:
    evaluation_strategy="steps",
    eval_steps=args.eval_steps,
    save_strategy="steps",
    save_steps=args.save_steps,
    save_total_limit=args.save_total_limit,
    logging_steps=args.logging_steps,
    run_name="sts",  # Will be used in W&B if `wandb` is installed
)
Rayyyyy's avatar
Rayyyyy committed
79

Rayyyyy's avatar
Update  
Rayyyyy committed
80
81
82
83
84
85
86
87
88
89
# 6. Create the trainer & start training
trainer = SentenceTransformerTrainer(
    model=model,
    args=args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    loss=train_loss,
    evaluator=dev_evaluator,
)
trainer.train()
Rayyyyy's avatar
Rayyyyy committed
90

Rayyyyy's avatar
Update  
Rayyyyy committed
91
# 7. Evaluate the model performance on the STS Benchmark test dataset
Rayyyyy's avatar
Rayyyyy committed
92

Rayyyyy's avatar
Update  
Rayyyyy committed
93
94
95
96
97
98
99
100
test_evaluator = EmbeddingSimilarityEvaluator(
    sentences1=test_dataset["sentence1"],
    sentences2=test_dataset["sentence2"],
    scores=test_dataset["score"],
    main_similarity=SimilarityFunction.COSINE,
    name="sts-test",
)
test_evaluator(model, output_path=output_dir)
Rayyyyy's avatar
Rayyyyy committed
101

Rayyyyy's avatar
Update  
Rayyyyy committed
102
103
104
# 8. Save the trained & evaluated model locally
final_output_dir = f"{output_dir}/final"
model.save(final_output_dir)